Issue
Korean Chemical Engineering Research,
Vol.60, No.4, 525-534, 2022
기수담수화와 전력 생산을 위한 폐루프형 압력 지연식 막 증류 공정의 성능 평가
Performance Evaluation of a Closed-Loop Pressure Retarded Membrane Distillation for Brackish Water Desalination and Power Generation
본 연구에서는 물과 전기의 동시 생산이 가능한 pressure retarded membrane distillation (PRMD)의 폐루프식 구성 디자인을 기수담수화에 적용해 최적 운전 조건과 성능 평가를 수행하였다. 시뮬레이션 결과 80℃ 이상의 폐열이 공급 될 때 순 에너지 생산량이 양수 값을 보이며 90℃ 이상일 때 안정적인 전력 생산이 가능한 것을 확인할 수 있었고 최적 유입수 유량은 0.6 kg/s를 나타냈다. 이 조건에서 3 g/L의 기수가 유입될 때 순 에너지 생산량은 2.56 W/m2, 물 플럭스는 8.04 kg/m2/hr의 값을 나타냈다. 기수의 농도가 1-3 g/L로 변화할 때 물 플럭스나 에너지 생산량은 큰 변화가 나타나지 않았고, 해수가 유입수로 사용될 때와 비교하면 더 높은 물 플럭스와 순 에너지 생산량을 보였다. 이를 통해 에너지 생산이라는 측면에 집중한다면 기수를 사용해서 PRMD를 운전하는 것이 더 효율적이라는 것을 확인할 수 있었다.
In this study, we investigated the applicability and optimal operating strategy of a closed-loop pressure retarded membrane distillation (PRMD) for brackish water desalination. For effective operation with net power generation, high temperature of heat source over 90℃ and feed flow rate at 0.6 kg/s are recommended. At 3 g/L of feed concentration, the average permeate flux and net energy density showed 8.04 kg/m2/hr and 2.56 W/m2, respectively. The average permeate flux and net energy density were almost constant in the range of feed concentration from 1 to 3 g/L. Compared to the case with seawater feed, the PRMD with brackish water feed showed higher average permeate flux and net energy density. Thus, PRMD application using brackish water feed can be more effective than that using seawater feed in terms of power generation.
[References]
  1. Li G, Zheng X, Renew. Sust. Energ. Rev., 62, 736, 2016
  2. Rezk H et al., Energy, 175, 423, 2019
  3. Olabi A et al., Energy, 209, 118373, 2020
  4. Hendricks T, Choate WT, “Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery,” 2006: United States. p. Medium: ED; Size: 74 p.
  5. Straub AP et al., Nature Energy, 1(7), 1, 2016
  6. Xu Z, Wang R, Yang C, Energy, 176, 1037, 2019
  7. Ammar Y et al., Appl. Energy, 89(1), 3, 2012
  8. Cheng LH, Wu PC, Chen J, J. Membr. Sci., 318(1-2), 154, 2008
  9. Kaczmarczyk M, Tomaszewska B, Bujakowski W, Desalination, 524, 115450, 2022
  10. Park K, Kim DY, Yang DR, Ind. Eng. Chem. Res., 56(50), 14888, 2017
  11. Yuan Z et al., J. Membr. Sci., 579, 90, 2019
  12. Lee MS et al., Desalination, 534, 115799, 2022
  13. Karagiannis IC, Soldatos PG, Desalination, 223(1-3), 448, 2008
  14. Ahdab YD, Lienhard JH, “Desalination of Brackish Groundwater to Improve Water Quality and Water Supply, in Global Groundwater,” Elsevier. 559-575(2021).
  15. González D, Amigo J, Suárez F, Renew. Sust. Energ. Rev., 80, 238, 2017
  16. Loeb S, J. Membr. Sci., 1, 49, 1976
  17. García-Payo MDC, Izquierdo-Gil MA, Fernández-Pineda C, J. Colloid Interface Sci., 230(2), 420, 2000
  18. Curcio E, Drioli E, Sep. Purif. Rev., 34(1), 35, 2005
  19. Martinez L, Rodriguez-Maroto JM, J. Membr. Sci., 312(1-2), 143, 2008
  20. Kamrani MP et al., Desalination Water Treatment, 56(8), 2013, 2015
  21. Iu I et al., ASHRAE Transactions, 113(1), 504, 2007
  22. Hasan A, Appl. Energy, 89(1), 237, 2012
  23. Politano A et al., Desalination, 451, 192, 2019
  24. Schofield R, Fane A, Fell C, J. Membr. Sci., 33(3), 299, 1987
  25. Martı́nez-Dı́ez L, Vazquez-Gonzalez MI, J. Membr. Sci., 156(2), 265, 1999