Issue
Korean Chemical Engineering Research,
Vol.60, No.4, 512-518, 2022
용도 변경된 암모니아 탱크 안전밸브 및 흡수시설에 관한 연구
Study of Pressure Safety Valves and an Absorption System for a Repurposed Ammonia Tank
본 연구는 울산석유화학공단 내 A사의 암모니아 탱크 안전장치를 대상으로 진행하였다. 탱크는 실린더 형태이며, 1972년에 프로필렌을 저장하기 위해 설계되었다. 그 후 시장환경에 따른 생산계획 변경으로 인해 탱크의 용도가 암모니아 저장으로 변경되었다. 저장 물질을 변경하는 과정에서 안전성을 검토했던 어떠한 과학적인 정보나 검토 자료를 찾을 수가 없었다. 따라서, 본 연구에서는 현재 안전하게 운전되고 있는지를 확인하기 위해 탱크의 상태를 조사하였다. 또한, 현재 설치되어 운영되고 있는 두 개의 안전장치 암모니아 흡수 시스템 및 Water curtain이 어느 정도 사고의 영 향을 경감하는지 분석하였다. 마지막으로, 비상대응계획 작성에 활용하기 위한 CA(consequence analysis)를 수행하였다. 그 결과 사고의 영향을 효율적으로 완화할 수 있도록 안전장치가 설치되어 있음을 확인하였으며, 암모니아 누출 시 긴급대응에 필요한 시간을 제시할 수 있었다.
In this study, safety devices for ammonia tanks of a company in Ulsan petrochemical industrial complex were studied. The type of a tank is cylindrical and this tank was originally designed to store propylene in 1972. Due to the changes of the production schedule according to market environments, the usage of this tank has been changed to store ammonia. Despite of the changes of materials, there is no scientific information or reviews for guaranteeing the safety. Therefore, in this study, the current status of this tank is investigated to confirm that the operational conditions are complying with safety conditions. Moreover, the safety devices such as an ammonia absorbing system and water curtains are analyzed how they mitigate the impact of an accident. In addition, consequence analysis is performed to provide a proper emergency response plan. Throughout these analysis, it is confirmed that installed safety devices effectively mitigate the impact of accidents, and the necessary time for an emergency response plan is suggested when ammonia release.
[References]
  1. Jung BG, Lee CJ, Korean J. Hazard. Mater., 4(2), 22, 2016
  2. Lee CH, Korea Labor Institute, 104(11), 33, 2013
  3. Khan FI, Abbasi SA, J. Loss Prevention in the Process Industries, 12(5), 361, 1999
  4. http://msds.kosha.or.kr/MSDSInfo/kcic/msdsdetail.do (accessed on 30 April 2021).
  5. Yoo BT, Moon MH, J. Korean Society Hazard Mitigation, 18(3), 311, 2018
  6. KOSHA guide D-18-2017 : “Technical guidelines for calculation, installation of discharge capacity of safety valves,” Korea Occupational Safety & Health Agency, Korea (2017).
  7. https://www.engineeringtoolbox.com/fluids-evaporation-latentheat-d_147.html (accessed on 20 March 2021).
  8. Firoozi B, Hydrocarb. Process., 94(8), 43, 2015
  9. Barderas AV, Rodea BSSG, Int. J. Res. Eng. Technol., 5(4), 1, 2016
  10. https://www.engineeringtoolbox.com/gases-solubility-water-d_1148. html (accessed on 30 April 2021).
  11. KOSHA guide P-107-2020 : Technical guidance on the selection of worst and alternative accident scenarios, Korea Occupational Safety & Health Agency, Korea (2020).
  12. Cavender F, Phillips S, Holland M, J. Med. Toxicol., 4(2), 127, 2008
  13. https://data.kma.go.kr/data (accessed on 15 March 2021).
  14. Fthenakis VM, Zakkay V, J. Loss Prev. Process Ind., 3(2), 197, 1990