Issue
Korean Chemical Engineering Research,
Vol.60, No.4, 499-505, 2022
용매 추출을 사용한 바닐린 생산공정의 개념 설계
Conceptual Design of Vanillin Production Process Using Solvent Extraction
본 연구에서는 크라프트 리그닌(Kraft Lignin)을 사용해 바닐린을 생산하는 공정의 개념 설계를 진행하였다. 기존 크라프트 리그닌은 대부분 저품질의 보일러 연료로 사용되거나 폐수로 버려지고 오직 2% 이하의 리그닌만 고품질의 제품으로 정제된다. 버려지는 크라프트 리그닌을 활용하기 위해 새로운 공정을 제안하였다. 기존 바닐린 생산 개념 공정은 NaOH를 사용한 알칼리 산화, 여과, 크로마토그래피, 결정화 단계로 진행됐다. 이중 상용화가 어려운 크로마토그래피를 용매 추출 공정으로 변경하였다. 제안된 용매 추출 공정의 바닐린 회수율 92.9%, 순도 99.5%이며, 이는 기존 크 로마토그래피 공정과 유사한 수준이다. 크로마토그래피와 비슷한 결과를 보이는 용매 추출 공정이 기존 크로마토그래피 공정을 대체할 수 있는 이유를 분석하였다.
This study presents a conceptual design of vanillin production from Kraft lignin. Most of the existing Kraft lignin is used as low-quality boiler fuel or discarded as wastewater, and only 2% or less of lignin has been refined into high-quality products. We propose the process developed in this study to utilize discarded Kraft lignin. The existing vanillin production concept process consisted of alkali oxidation using NaOH, filtration, chromatography, and crystallization. Chromatography, which is difficult to commercialize, was changed to a solvent extraction process. The recovery rate of vanillin of the proposed solvent extraction process is 92.9%, and the purity is 99.5%, which is similar to the existing chromatography process. The reason why the solvent extraction process showing similar results to chromatography can replace the existing chromatography process was analyzed.
[References]
  1. Wongtanyawat N, Lusanandana P, Khwanjaisakun N, Kongpanna P, Phromprasit J, Simasatitkul L, Amornraksa S, Assabumrungrat S, Comput. Chem. Eng., 117, 159, 2018
  2. Mota MIF, Pinto RPC, Loureiro JM, Rodrigues AE, Sep. Purif. Rev., 45, 227, 2016
  3. Bomgardner MM, Chem. Eng. News, 94, 38, 2016
  4. Chattopadhyay P, Banerjee G, Sen SK, J. Clean Prod., 182, 272, 2018
  5. Bomgardner M, Chem. Eng. News, 92, 14, 2014
  6. Qu C, Kaneko M, Kashimura K, Tanaka K, Ozawa S, Watanabe T, ACS Sustain. Chem. Eng., 5, 11551, 2017
  7. Khwanjaisakun N, Amornraksa S, Simasatitkul L, Charoensuppanimit P, Assabumrungrat S, Bioresour. Technol., 299, 122559, 2020
  8. Mun SM, Utilization of Lignin : Past, Present, Future, 34 (2013).
  9. Laurichesse S, Avérous L, Prog. Polym. Sci, 39, 1266, 2014
  10. Maeda M, Hosoya T, Yoshioka K, Miyafuji H, Ohno H, Yamada T, J. Wood Sci., 64, 810, 2018
  11. Gomes E, Rodrigues A, Sep. Purif. Technol., 239, 116551, 2020
  12. Wang Y, Sun S, Li F, Cao X, Sun R, Ind. Crop. Prod., 116, 116, 2018
  13. Fache M, Boutevin B, Caillol S, Green Chem., 18, 712, 2016
  14. Luziatelli F, Brunetti L, Ficca AG, Ruzzi M, Front. Bioeng. Biotechnol., 7, 279, 2019
  15. McCallum CS, Wang W, Doran WJ, Forsythe WG, Garrett MD, Hardacre C, Leahy JJ, Morgan K, Shin DS, Sheldrake GN, Green Chem., 23, 1847, 2021
  16. Márquez-Medina MD, Rodríguez-Padrón D, Balu AM, Romero AA, Muñoz-Batista MJ, Luque R, Catalysts, 9, 290, 2019
  17. Vu TT, Lim YI, Song D, Hwang KR, Kim DK, Biomass Convers. Biorefinery., 2021
  18. Werhan H, “A Process for the Complete Valorization of Lignin Into Aromatic Chemicals Based on Acidic Oxidation,” (2013).
  19. Gomes ED, Rodrigues AE, Sep. Purif. Technol., 216, 92, 2019
  20. Vigneault ADKJ, Chornet E, “Base-catalyzed Depolymerization of Lignin Separation of Monomers,” Can. J. Chem. Eng.,(2008).
  21. Bradley JC, Friesen B, Mancinelli J, Bohinski T, Mirza K, Bulger D, Moritz M, Federici M, Rein D, Tchakounte C, Solubilities of Organic Compounds in Organic Solvents,” Nat. Preced.(2010).
  22. Noubigh A, Mgaidi A, Abderrabba M, Provost E, Fürst W, J. Sci. Food Agric., 87, 783, 2007
  23. Shakeel F, Haq N, Siddiqui NA, Food Chem., 180, 244, 2015
  24. Ragnar M, Lindgren CT, Nilvebrant NO, J. Wood Chem. Technol., 20, 277, 2000
  25. Gomes E, Rodrigues A, Sep. Purif. Technol., 247, 116977, 2020
  26. Mota MI, “Fractionation and Purification of Syringaldehyde and Vanilin from Oxidation of Lignin,” (2017).
  27. Timedjeghdine M, Hasseine A, Binous H, Bacha O, Attarakih M, Fluid Phase Equilib., 415, 51, 2016
  28. Weiser RB, Geankoplis CJ, Ind. Eng. Chem., 47, 858, 1955
  29. Rydberg J, Solvent Extraction Principles and Practice, Revised and Expanded, CRC press (2004).
  30. Toikka M, Samarov A, Trofimova M, Golikova A, Tsvetov N, Toikka A, Fluid Phase Equilib., 373, 72, 2014
  31. Rydberg J, Solvent Extraction Principles and Practice, Revised and Expanded, CRC press(2004).
  32. Toikka M, Samarov A, Trofimova M, Golikova A, Tsvetov N, Toikka A, Fluid Phase Equilib., 373, 72, 2014
  33. Davis RNG, Tao L, Biddy MJ, Tan ECD, Beckham GT, Humbird D, Thompson DN, Roni MS, “Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels and Coproducts 2018 Biochemical Design Case Update,” p. 147 (2018).
  34. Jiang X, de Assis AC, Kollman M, Sun R, Jameel H, Chang HM, Gonzalez R, Green Chem., 22, 7448, 2020