Issue
Korean Chemical Engineering Research,
Vol.60, No.4, 473-477, 2022
폐배터리 재활용 공정 폐액 중 리튬 회수를 위한 분리 기술 고찰
A review on Separation Technologies for Lithium Recovery from Waste Solutions in Recycling Process of Waste Battery
본 연구에서는 폐배터리 재활용 공정에서 발생하는 공정폐액 중 리튬 회수를 위한 후보 기술들을 검토하고 상용화 관점에서 해당 공정에 적용 가능한 기술들을 정성적 측면에서 검토하였다. 현재 기술 수준에서 상용화 규모로 적용 가능한 증발법, 침전 및 용매추출 기술이 있다. 증발법의 경우 대규모의 땅을 필요로 하고 농축과정에서의 Li 손실로 낮은 회수율 보여 적용하기 어렵다. 침전의 경우, 상용화되어 있는 기술로 인산의 높은 Li/Na 선택도로 높은 회수율을 보 이지만 비싼 인산 사용으로 회수 단계 필요로 공정이 복잡하고 Li 농축과정에서 고체를 다루고 있어 연속운전이 불가능하다는 단점이 있다. 용매추출의 경우, Li/Na 선택도가 높은 저렴한 추출제를 찾는다면 전 단계의 다른 금속 추출 시 사용되고 있는 방법으로 연속운전이 가능하고 Li 농축 시 액체 상태이기 때문에 연속운전이 가능하다는 장점이 있다. 침전기술과 비교하여 유사한 회수율을 보인다면 상용화가 가능성이 가장 높을 것이다.
In this study, candidate technologies for lithium recovery from the process waste liquid generated in the waste battery recycling process were reviewed, and technologies applicable to the process from the commercialization point of view were reviewed from a qualitative point of view. The evaporation method is difficult to apply because it requires a large-scale land and shows a low recovery rate due to the loss of Li during the concentration process. In the case of precipitation, a commercially available technology shows a high recovery rate due to the high Li/Na selectivity of phosphoric acid, but there are disadvantages in that the process is complicated due to the use of expensive phosphoric acid, requiring a recovery step, and continuous operation is impossible because solids are handled in the Li concentration process. In the case of solvent extraction, if we find an inexpensive extractant with high Li/Na selectivity, continuous operation is possible with the method used in extraction of other metals in the previous step, and when Li is concentrated, continuous operation is possible because it is in a liquid state. If it shows a similar recovery rate compared to precipitation technology, commercialization will be the most likely.
[References]
  1. <2020> Global LIB Line Expansion Outlook (~2030).
  2. Zhang Y, Hu Y, Wang L, Sun W, Miner. Eng., 139, 105868, 2019
  3. Zhao X, Yang H, Wang Y, Yang L, Zhu L, Sep. Purif. Technol., 119078, 2021
  4. Wesselborg T, Virolainen S, Sainio T, Hydrometallurgy, 202, 105593, 2021
  5. Gu G, Gao T, Resour. Policy, 74, 102261, 2021
  6. Choubey PK, Chung KS, Kim MS, Lee JC, Srivastava RR, Miner. Eng., 110, 104, 2017
  7. Liu C, Lin J, Cao H, Zhang Y, Sun Z, J. Clean Prod., 228, 801, 2019
  8. Yang S, Zhang F, Ding H, He P, Zhou H, Joule, 2, 1648, 2018
  9. Meshram P, Pandey BD, Mankhand TR, Hydrometallurgy, 150, 192, 2014
  10. Zhang X, Li L, Fan E, Xue Q, Bian Y, Wu F, Chen R, Chem. Soc. Rev., 47, 7239, 2018
  11. Ballinger B, Stringer M, Schmeda-Lopez DR, Kefford B, Parkinson B, Greig C, Smart S, Appl. Energy, 255, 113844, 2019
  12. Zhang P, Yokoyama T, Itabashi O, Suzuki TM, Inoue K, Hydrometallurgy, 47, 259, 1998
  13. Xu L, Chen C, Fu ML, Hydrometallurgy, 197, 105439, 2020
  14. Bae H, Kim Y, Adv. Mater., 2, 3234, 2021
  15. Zhang Y, Hu Y, Sun N, Khoso SA, Wang L, Sun W, Hydrometallurgy, 187, 125, 2019
  16. Li B, Wu J, Lu J, J. Clean Prod., 261, 121152, 2020
  17. Sun S, Yu X, Li M, Duo J, Guo Y, Deng T, J. Clean Prod., 247, 119178, 2020
  18. Al-Ghouti MA, Al-Absi RS, Sci. Rep., 10, 1, 2020
  19. Park J, Sato H, Nishihama S, Yoshizuka K, Solvent Extr. Ion Exch., 30, 398, 2012
  20. Li X, Mo Y, Qing W, Shao S, Tang CY, Li J, J. Membr. Sci., 591, 117317, 2019
  21. Gao D, Guo Y, Yu X, Wang S, Deng T, J. Chem. Eng. Jpn., 49, 104, 2018
  22. Liu X, Zhong M, Chen X, Zhao Z, Hydrometallurgy, 176, 73, 2018
  23. Pranolo Y, Zhu Z, Cheng CY, Hydrometallurgy, 154, 33, 2015
  24. Zhang L, Li L, Shi D, Li J, Peng X, Nie F, Sep. Purif. Technol., 188, 167, 2017