Issue
Korean Chemical Engineering Research,
Vol.60, No.3, 459-467, 2022
소결된 백금주석 촉매의 산소 처리에 의한 재분산 연구
Redispersion of Sintered PtSn Catalyst by Oxygen Treatment
Pt, PtSn 촉매를 제조한 후, 재분산 연구를 위해 수소분위기에서 소결시킨 후 여러 온도에서 산소처리를 적용하여 백 금주석입자의 재분산 정도를 확인하고, 프로판 탈수소 반응실험으로 촉매의 활성을 측정하여 촉매의 물리적, 화학적 상태 변화와 활성의 관계를 이해하고자 하였다. 재분산 처리에 따른 촉매 활성 금속의 상태 및 촉매 입자 간 상호작용 등을 보기 위해 X-선 회절분석(XRD), CO-화학흡착(CO-pulse chemisorption), 수소 승온환원(H2-TPR) 분석을 실시하 였다. 산소 재분산 처리 조건에 따라 백금의 분산도 및 입자 크기, 촉매의 결정상 및 환원 거동이 달라지는 것을 확인 하였다. 촉매를 재분산 처리하였을 시 500℃에서 산소 처리한 촉매가 가장 높은 전환율과 활성회복률을 보였다. 500 ℃ 로 산소 처리한 촉매가 백금의 분산도도 비교적 높게 나타나고, 평균 입자 크기가 작아지는 것을 XRD와 CO-화학흡 착 결과로부터 확인하여 백금주석입자가 재분산되는 것을 알 수 있었다. 이러한 산소처리에 의한 재분산으로 인해 촉 매활성이 회복된다는 것을 알 수 있었고, 백금보다 백금주석 촉매의 활성회복률이 더 높았다.
Redispersion of Pt-Sn particles in Pt, PtSn catalyst which have been sintered by high temperature hydrogen reduction was investigated using oxygen treatment with various temperatures. The aim of this study was to understand the relationship between the catalytic activity for propane dehydrogenation reaction and the change in the physicochemical properties of the catalyst. X-ray diffraction analysis (XRD), CO pulse chemisorption, and H2 temperature programmed reduction (H2-TPR) were performed to investigate the state of active metal and interactions between particles of redispersed catalyst. It was confirmed that the dispersion and particle size of platinum, the crystal phase of the catalyst, and the reduction behavior were changed according to the oxygen treatment. As for the catalytic activity in propane dehydrogeantion, sintered PtSn catalyst treated with oxygen at 500℃ showed best activity and recovery of initial activity. It was confirm that catalyst after oxygen treatment at 500℃ showed high dispersion of Pt and decreased particle size as the results of CO pulse chemisorption and XRD of catalyst, and thus the redispersion of PtSn particles in sintered catalyst was occurred. Catalytic activity was recovered due to redispersion using oxygen treatment, and the activity recovery of the PtSn catalyst was higher than that of Pt catalyst.
[References]
  1. Bartholomew CH, Appl. Catal. A: Gen., 212, 17, 2001
  2. Argyle MD, Bartholomew CH, Catalysts, 5(1), 145, 2015
  3. Arteaga GJ, Anderson JA, Rohchester CH, J. Catal., 187(1), 219, 1999
  4. Hung CC, Yeh CY, Shih CC, Chang JR, Catalysts, 9(4), 362, 2019
  5. Arteaga GJ, Anderson JA, Becker SM, Rohchester CH, J. Mol. Catal. A-Chem., 145(1), 183, 1999
  6. Fiedorow RMJ, Wanke SE, J. Catal., 43, 34, 1976
  7. Fiedorow RMJ, Chahar BS, Wanke SE, J. Catal., 51, 193, 1978
  8. Lee TJ, Kim YG, J. Catal., 90, 279, 1984
  9. Li X, Pei C, Gong J, Chem., 7(7), 1755, 2021
  10. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM, Chem. Rev., 114, 10613, 2014
  11. Bhasin MM, McCain JH, Vora BV, Imai T, Pujadó PR, Appl. Catal. A: Gen., 221(1), 397, 2001
  12. Arteaga GJ, Anderson JA, Rohchester CH, J. Catal., 189(1), 195, 2000
  13. Arteaga GJ, Anderson JA, Rohchester CH, J. Catal., 184(1), 268, 1999
  14. Chong FK, Anderson JA, Becker SM, Rohchester CH, J. Catal., 190(1), 327, 2000
  15. Stagga SM, Querinib CA, Alvareza WE, Resasco DE, J. Catal., 168(1), 75, 1997
  16. Kim GH, Jung K, Kim W, Um B, Shin C, Oh K, Koh HL, Res. Chem. Intermed., 42, 351, 2016
  17. Choi YS, Oh K, Jung K, Kim W, Koh HL, Catalysts, 10, 898, 2020
  18. Tedeeva MA, Kustov AL, Pribytkov PV, Kapusttin GI, Leonov AV, Tkachenko OP, Tursunov OB, Evdokimenko N, Fuel, 313, 122698, 2022
  19. Liu Y, Zhang G, Wang J, Zhu J, Zhang X, Miller JT, Song C, Guo X, Chin. J. Catal., 42, 2225, 2021
  20. Sattler JJHB, Gonzalez-Jimenez ID, Luo L, Stears BA, Malek A, Barton DG, Kilos BA, Kaminsky MP, Angew. Chem.-Int. Edit.
  21. Searles K, Siddiqi G, Safonova OV, Copéret C, Chem. Sci., 8(4), 2661, 2017
  22. Liu G, Zhao Z, Wu T, Zeng L, Gong J, ACS Catal., 6(8), 5207, 2016
  23. Wu Y, Han Z, Yam X, Lang W, Guo Y, Microporous Mesoporous Mater., 330, 111616, 2022
  24. Im JH, Choi MK, ACS. Catal., 6, 2819, 2016
  25. https://www.tkisrus.com/assets/pdf/brochures/en/tkis-star-en.pdf
  26. Wang J, Chang X, Chen S, Sun G, Zhou X, Vovk E, Yang Y, Deng W, Zhao Z, Mu R, Pei C, Gong J, ACS. Catal., 11, 4401, 2021
  27. Anresa P, Gaune-Escarda M, Brosa JP, Hayerb E, J. Alloy. Compd., 280(1-2), 158, 1998
  28. Kuznetsov VI, Belyi AS, Yurchenko EN, Smolikov MD, Protasova MT, Zatolokina EV, Duplyakin VK, J. Catal., 99(1), 159, 1986
  29. Srinivasan R, Angelis RJD, Davis BH, Catal. Lett., 4, 303, 1990
  30. Tasbihi M, Feyzi F, Amlashi MA, Abdullah AZ, Mohamed AR, Fuel Process. Technol., 88, 883, 2007
  31. Llorca J, Delapiscina PR, Fierro JL, Sales J, Homs N, J. Catal., 156, 139, 1995
  32. Srinivasan R, Davis BH, Platin. Met. Rev., 36, 151, 1992
  33. Vu BK, Song MB, Ahn IY, Suh YW, Suh DJ, Kim W, Koh HL, Choi YG, Shin EW, Appl. Catal. A: Gen., 400, 25, 2011
  34. Vicerich MA, Benitez VM, Sanchez MA, Especel C, Epron F, Pieck CL, Can. J. Chem. Eng., 98(3), 749, 2020
  35. Kim SS, Choi SH, Lee SM, Hong SC, J. Ind. Eng. Chem., 18(1), 272, 2012
  36. He Z, Qian Q, Zhang Z, Meng Q, Zhou H, Jiang Z, Han B, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 373(2057), 20150006, 2015
  37. Mazzieri VA, Grau JM, Yori JC, Vera CR, Pieck CL, Appl. Catal. A: Gen., 354(1-2), 161, 2009
  38. Lee J, Jang EJ, Oh DG, Szanyi J, Kwak KH, J. Catal., 285, 204, 2020
  39. Bariås OA, Holmen A, Blekkan EA, J. Catal., 158, 1, 1996