Issue
Korean Chemical Engineering Research,
Vol.60, No.3, 414-422, 2022
농경잔류물로부터 헤미셀룰로오스 가수분해물 생산을 위한 산촉매 열수 분별공정의 특성 비교
Comparison of Characteristics of Acid-catalyzed Hydrothermal Fractionation for Production of Hemicellulose Hydrolyzate from Agricultural Residues
본 연구의 목적은 국내 대표적인 농경잔류물인, 볏짚과 보릿짚을 이용하여 헤미셀룰로오스 부분의 최대 가용화를 위 한 산 촉매 열수 분별공정의 타당성을 조사한 것이다. 1.2-2.9 범위의 반응가혹도(CS; Combined reaction severity)에서 다양한 분별 조건들을 사용하여 초기 반응조건 기준을 설정했다. 볏짚의 경우, 160 ℃의 반응온도, 0.75%(w/v)의 H2SO4, 20분의 반응시간, 그리고 1:15의 고체/액체 비율을 가진 반응 조건에서 56.6%의 헤미셀룰로스 당 수율을 얻을 수 있었 으며, 보릿짚의 경우, 150 ℃ 반응온도, 0.75%(w/v) H2SO4, 15분의 반응시간, 1:10의 고체/액체 비율에서 83.0%의 헤 미셀룰로스 당 수율을 얻었다. 따라서, 볏짚과 비교하여 보릿짚의 경우 산촉매 열수분획을 효과적으로 수행할 수 있었 다. 분별과정 후 남은 분획된 고형분은 볏짚과 보릿짚에서 각각 48.5%와 57.5%였다. 분별된 볏짚과 보릿짚의 XMG(Xylan+Mannan+Galactan) 함량은 17.3% 및 17.6%에서 6.0% 및 2.6%로 각각 감소하였으며, 이는 원료 짚 기준 으로 각각 16.7% 및 8.5%에 해당한다. 또한, 보리 짚의 산촉매 열수분별 과정에서 과도한 분해로 인해 셀룰로오스 및 XMG의 5.6% 및 8.5%만 손실된 반면, 볏짚의 셀룰로오스 및 XMG 손실은 6.4% 및 26.6%이었다. 볏짚의 헤미셀룰로 스 당은 산 촉매 열수 분별공정중, 다소 높은 반응가혹도로 인해 심하게 과분해된 것에 기인한다.
The objective of this work was to investigate the feasibility of acid-catalyzed hydrothermal fractionation for maximum solubilization of the hemicellulosic portion of two typical agricultural residues. The fractionation conditions converted into combined reaction severity (CS) in the range of 1.2-2.9 was used to establish a simple reaction criteria at glance. The hemicellulosic sugar yield of 56.6% was shown when rice straw was fractionated at the conditions at the conditions; 160℃ of temperature 0.75% (w/v) of H2SO4, 20 min of reaction time, 1:15 solid/liquid ratio. The hemicellulosic sugar yield of 83.0%, however, was achieved when barley straw was fractionated at the conditions at the conditions; 150℃ of temperature 0.75% (w/v) of H2SO4, and 15 min of reaction time, 1:10 solid/liquid ratio. For barley straw, acid-catalyzed hydrothermal fractionation could be effectively performed. After the fractionation process, the remaining fractionated solids were 48.5% and 57.5% from raw rice and barley straws, respectively. The XMG contents in the solid residues decreased from 17.3% and 17.6% to 6.0% and 2.6%, which corresponded to 16.7% and 8.5% on the basis of the raw straws, respectively. In another way, only 5.6% of cellulose and 8.5% of XMG were lost due to excessive decomposition during the acid-catalyzed hydrothermal fractionation of barley straw, compared to cellulose and XMG losses of 6.4% and 26.6% in rice straw. Hemicellulosic sugars from the rice straw were considered more overdecomposed due to the somewhat higher reaction severity at the acid-catalyzed hydrothermal fractionation.
[References]
  1. Prasad S, Singh A, Korres NE, Rathore D, Sevda S, Pant D, Bioresour. Technol., 303, 122964, 2020
  2. Van Meerbeek K, Muys B, Hermy M, Renew. Sust. Energ. Rev., 102, 139, 2019
  3. Opia AC, Hamid MKBA, Syahrullail S, Abd Rahim AB, Johnson CA, Mater Today Proc, 39(2), 922, 2020
  4. Jovic TH, Kungwengwe G, Mills A, Whitaker IS, Front. Mech. Eng., 5(19), 1, 2019
  5. DiGregorio BE, Mirel. Chem. Biol., 16, 1, 2009
  6. Demirbas MF, Mustafa B, Havva B, Energy Conv. Manag., 50(7), 1746, 2009
  7. Dincer I, Renew. Sust. Energ. Rev., 4(2), 157, 2000
  8. Koh LP, Jaboury G, Biol. Conserv., 141(10), 2450, 2008
  9. Cherubini F, Energy Conv. Manag., 51(7), 1412, 2010
  10. Jeong JM, Kim EC, Korean J. Crop. Sci., 62, 157, 2017
  11. Kim S, Dale BE, Biomass Bioenerg., 26, 361, 2004
  12. Gadde B, Bonnet S, Menke C, Garivait S, Environ. Pollut., 157, 1554, 2009
  13. Ranjan A, Khanna S, Moholkar V, Appl. Energy, 103, 32, 2013
  14. Hendriks ATWM, Zeeman G, Bioresour. Technol., 100, 10, 2009
  15. Kim S, Dale BE, Biomass Bioenerg., 26, 361, 2004
  16. Chen Y, Sharma-Shivappa RR, Keshwani D, Chen C, Appl. Biochem. Biotechnol., 142, 276, 2007
  17. FAOSTAT. Food and agriculture organization of the United Nations, http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID= 567#ancor (Accessed Oct. 2021).
  18. Linde M, Galbe M, Zacchi G, Enzyme Microb. Technol., 40, 1100, 2007
  19. Alvira P, Tomas-pejo E, Ballesteros M, Negro MJ, Bioresour. Technol., 101, 4851, 2010
  20. Oliva JM, Saez FS, Ballesteros I, Gonzalez A, Negro MJ, Manzanares P, Ballesteros M, Appl. Biochem. Biotechnol., 105, 141, 2003
  21. Hendriks ATWM, Zeeman G, Bioresour. Technol., 100, 10, 2009
  22. Alvira P, Tomas-pejo E, Ballesteros M, Negro MJ, Bioresour. Technol., 101, 4851, 2010
  23. Ramos LP, Quim. Nova, 26(6), 863, 2003
  24. Bozell JJ, Clean, 36(8), 641, 2008
  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Determination of structural carbohydrates and lignin in biomass (NREL/TP-510-42618). National Renewable Energy Laboratory(2008).
  26. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, (NREL/TP-510- 42623). National Renewable Energy Laboratory(2006).
  27. Lee JW, Jeffries TW, Bioresour. Technol., 102, 5884, 2011
  28. Guo GL, Chen WH, Chen WH, Men LC, Hwang WS, Bioresour. Technol., 99, 6046, 2008
  29. Overend RP, Chornet E, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., A321, 523, 1987