Issue
Korean Chemical Engineering Research,
Vol.60, No.3, 371-376, 2022
LNG 냉열 기반 해수 담수화 공정의 설계 및 분석
Design and Analysis of Desalination Process using LNG Cold Energy
액화 천연 가스는 도시가스로 공급되기 위해 기화의 과정을 거치는데 이 때 약 800 kJ/kg의 냉열이 발생한다. 현재 이 에너지는 모두 바다로 버려지고 있어 에너지 재순환 관점에서 보면 아주 심각한 에너지 낭비를 초래하고 있다. 본 연구에서는 이 점에 착안하여 버려지는 액화 천연 가스의 냉열을 활용할 수 있는 해수담수공정을 제안하고 이 공정을 최적화하여 고유 전력 소비와 경제성에 대해 분석하였다. 그 결과 제안된 공정의 에너지 소모량은 -5.2 kWh/m3, 담수 생산 단가는 0.148 USD/m3으로 계산되어 현재까지 개발된 어떤 공정보다도 우수함을 확인하였다.
Liquefied natural gas undergoes a process of vaporization to be supplied as city gas, which generates about 800 kJ/kg of cold energy. Currently, all of this cold energy is being dumped into the sea, resulting in a very serious energy waste from the point of view of energy recycling. In this study, a seawater desalination process that can utilize the wasted cold energy was proposed, and this process was optimized to analyze the specific power consumption and economic feasibility. As a result, the specific energy consumption of the proposed process was calculated as -5.2kWh/ m3, and the production cost of the pure water was 0.148 USD/m3, confirming that it is superior to any other process developed so far.
[References]
  1. Ghaffour N, Missimer TM, Amy GL, Desalination, 309, 197, 2013
  2. Reddy KV, Ghaffour N, Desalination, 205, 340, 2007
  3. Sommariva C, Hogg H, Callister K, Desalination, 158, 17, 2003
  4. Al-Sahali M, Ettouney H, Desalination, 214, 227, 2007
  5. Al-Karaghouli A, Kazmerski LL, Renew. Sust. Energ. Rev., 24, 343, 2013
  6. Rostamzadeh H, Ghiasirad H, Amidpour M, Amidpour Y, Desalination, 477, 114261, 2020
  7. Kim J, Park K, Yang DR, Hong S, Appl. Energy, 254, 113652, 2019
  8. Ligaray M, Kim N, Park S, Park JS, Park J, Kim Y, Cho KH, Chem. Eng. J., 395, 125082, 2020
  9. Park K, Kim DY, Jang YH, Kim M, Yang DR, Hong S, Water Res., 171, 115426, 2020
  10. Moharram NA, Bayoumi S, Hanafy AA, El-Maghlany WM, Case Stud. Therm. Eng., 23, 100807, 2021
  11. Babu P, Nambiar A, He T, Karimi IA, Lee JD, Englezos P, Linga P, ACS Sustainable Chem. Eng., 6, 8093, 2018
  12. He T, Nair SK, Babu P, Linga P, Karimi IA, Appl. Energy, 222, 13, 2018
  13. Chong ZR, He T, Babu P, Zheng J, Linga P, Desalination, 463, 69, 2019
  14. Koo J, Oh SR, Choi YU, Jung JH, Park K, Energies, 12, 1933, 2019
  15. Park K, Won W, J. Natural Gas Sci. Eng., 34, 958, 2016
  16. Remeljej C, Hoadley A, Energy, 31, 2005, 2006
  17. Akbari N, Appl. Therm. Eng., 140, 442, 2018
  18. Wade NM, Desalination, 136, 3, 2001
  19. Bhojwani S, Topolski K, Mukherjee R, Sengupta D, El-Halwagi MM, Sci. Total Environ., 651, 2749, 2019
  20. Wang Q, J. Membr. Sci., 14, 439, 2019
  21. Karagiannis IC, Soldatos PG, Desalination, 223, 448, 2008