Issue
Korean Chemical Engineering Research,
Vol.60, No.1, 159-168, 2022
Mo-Al 복합 산화물의 질화반응 처리된 촉매상에서 암모니아 촉매 분해반응
Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide
MoO3 비율을 10-50 중량비로 변화하여 제조한 Mo-Al 복합 산화물 상에서 소성 후 승온 질화반응을 통하여 얻은 Mo-Al 질화물 상에서 암모니아 분해반응에서의 촉매 활성을 검토하였다. 제조된 촉매의 물리·화학적 특성을 알아보기 위하여 N2 흡착분석, X-선 회절분석(XRD), X-선 광전자분석법(XPS), 수소 승온환원(H2-TPR), 투과전자현미경(TEM)분석을 수행하였다. 600 °C 에서 소성 후 Mo-Al 복합산화물은 γ-Al2O3와 Al2(MoO4)3 결정상을 나타냈으며 질화반응후의 질화물은 비정형 형태를 보여주었다. 질화반응 후의 비표면적은 MoO3의 위상전환반응에 의해 Mo 질화물 형성으로 인해 증가하였으며, Mo 질화물이 γ-Al2O3에 담지된 형태를 보여주었다. 암모니아 분해반응에서의 촉매 활성은 40 wt% MoO3가 가장 좋은 활성을 보여주었고, 질화반응 시간이 증가함에 따라 활성이 증가하였으며 이에 따라 활성화에너지 감소 효과를 나타냈다.
Catalytic activity in ammonia decomposition reaction was studied on Mo-Al nitride obtained through temperature programmed nitridation of calcined Mo-Al mixed oxide prepared by varying the MoO3 quantity in the range of 10-50 wt%. N2 sorption analysis, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction (H2-TPR), and transmission electron microscopy (TEM) to investigate the physicochemical properties of the prepared catalyst were performed. After calcination at 600 °C, the XRD of Mo-Al oxide showed γ-Al2O3 and Al2(MoO4)3 phases, and the nitride after nitridation showed an amorphous form. The specific surface area after nitridation by topotactic transformation of MoO3 to nitride was increased due to the formation of Mo nitride, and the Mo nitride was observed to be supported on γ-Al2O3. As for the catalytic activity in the ammonia decomposition reaction, 40 wt% MoO3 showed the best activity, and as the nitridation time increases, the activity increased, and thus the activation energy decreased.
[References]
  1. Bell TE, Torrente-Murciano L, Top. Catal., 59, 1438, 2016
  2. Mukherjee S, Devaguptapu SV, Sviripa A, Lund CRF, Wu G, Appl. Catal. B: Environ., 226, 162, 2018
  3. Lamb KE, Dolan MD, Kennedy DF, Int. J. Hydrog. Energy, 44(7), 3580, 2019
  4. Le TA, Do QC, Kim YM, Kim TW, Chae HJ, Korean J. Chem. Eng., 38(6), 1087, 2021
  5. Schuth F, Palkovits R, Schlogl R, Su DS, Energy Environ. Sci., 5, 6278, 2012
  6. Mukherjee S, Devaguptapu SV, Sviripa A, Lund CRF, Wu G, Appl. Catal. B: Environ., 226, 162, 2018
  7. Makepeace JW, Wood TJ, Hunter HMA, Jones MO, David WIF, Chem. Sci., 6, 3805, 2015
  8. Guo J, Wang P, Wu G, Wu A, Hu D, Xiong Z, Wang, Yu JP, Chang F, Chen Z, Chen P, Angew. Chem.-Int. Edit., 54, 2950, 2015
  9. Hajduk S, Dasireddy VDBC, Likozar B, Drazic G, Orel ZC, Appl. Catal. B: Environ., 211, 57, 2017
  10. Huo L, Han X, Zhang L, Liu B, Gao R, Cao B, Wang WW, Jia CJ, Liu K, Liu J, Zhang J, Appl. Catal. B: Environ., 294, 120525, 2021
  11. Huo LL, Liu BC, Li H, Cao B, Hu XC, Fu XP, Jia CJ, Zhang J, Appl. Catal. B: Environ., 253, 121, 2019
  12. Morlanes N, Sayas S, Shterk G, Catal. Sci. Techn., 11, 3014, 2021
  13. Huang C, Yu Y, Tang X, Liu Z, Zhang J, Ye C, Ye Y, Zhang R, Appl. Surf. Sci., 5321, 147335, 2020
  14. Wang Y, Kunz MR, Siebers S, Rollins H, Gleaves J, Yablonsky G, Fushimi R, Catalysts, 9, 104, 2019
  15. Fu E, Qiu Y, Lu H, Wang S, Liu L, Feng H, Yang Y, Wu Z, Xie Y, Gong F, Xiao R, Fuel Proc. Tech., 221, 106945, 2021
  16. Maleki H, Fulton M, Bertola V, Chem. Eng. J., 411, 128595, 2021
  17. Feng J, Liu L, Ju X, Wang J, Zhang X, He T, Chen P, ChemCatChem, 13, 1552, 2012
  18. Bajus S, Agel F, Kusche M, Bhriain NN, Wasserscheid P, Appl. Catal. A: Gen., 510, 189, 2016
  19. Nagaoka K, Eboshi T, Takeishi Y, Tasaki R, Honda, Imamura K, Sato K, Sci. Adv., 3, e16027, 2017
  20. Chen YL, Juang CJ, Chen YC, Catalysts, 11(3), 321, 2021
  21. Le TA, Kim Y, Kim JW, Lee SU, Kim JR, Kim TW, Lee YJ, Chae HJ, Appl. Catal. B: Environ., 285, 119831, 2021
  22. Lucentini I, Casanovas A, Llorca J, Int. J. Hydrog. Energy, 44(25), 12693, 2019
  23. Lucentini I, Colli GG, Luzi CD, Serrano I, Martinez OM, Llorca J, Appl. Catal. B: Environ., 286, 119896, 2021
  24. Wang ZQ, Qu YM, Shen XL, Cai ZF, Int. J. Hydrog. Energy, 44(14), 7300, 2019
  25. Li G, Kanezashi M, Tsuru T, Catalysts, 7(1), 23, 2017
  26. Tang H, Wang Y, Zhang W, Liu Z, Li L, Han W, Li Y, J. Solid State Chem., 295, 121946, 2021
  27. Maleki H, Fulton M, Bertola V, Chem. Eng. J., 411, 128595, 2021
  28. Zhang X, Liu L, Feng J, Ju X, Wang J, He T, Chen P, Catal. Sci. Techn., 11, 2915, 2021
  29. Pinzon M, Romero A, Consuegra ADL, Osa ARDL, Sanchez P, J. Ind. Eng. Chem., 94, 326, 2021
  30. Podila S, Zaman SF, Driss H, Alhamed, Al-Zahranib YA, Petrov LA, Catal. Sci. Technol., 6, 1496, 2016
  31. Baek SH, Yun K, Kang DC, An H, Park MB, Shin CH, Min HK, Catalysts, 11(2), 192, 2021
  32. Srifa A, Okura K, Okanishi T, Muroyama H, Matsui T, Eguchi K, Catal. Sci. Technol., 6, 7495, 2016
  33. Jolaoso LA, Zaman SF, Podila S, Driss H, Al-Zahrani AA, Daous MA, Petrov L, Int. J. Hydrog. Energy, 43(10), 4839, 2018
  34. Lorenzut B, Montini T, Bevilacqua M, Fornasiero P, Appl. Catal. B: Environ., 125, 409, 2012
  35. Dewangan K, Patil SS, Joag DS, More MA, Gajbhiye NS, J. Phys. Chem. C, 114, 14710, 2010
  36. Colling CW, Choi JG, Thompson LT, J. Catal., 160(1), 35, 1996
  37. Choi JG, Brenner JR, Colling CW, Demczyk BG, Dunning JL, Thomason LT, Catal. Today, 15, 201, 1992
  38. Colling CW, Thompson LT, J. Catal., 146(1), 193, 1994
  39. Zhang D, Liu WQ, Liu YA, Etim UJ, Liu XM, Yan ZF, Chem. Eng. J., 230, 706, 2017
  40. Meng D, Wang B, Yu WZ, Li Z, Ma X, Catalysts, 7, 151, 2017
  41. Taghili N, Manteghian M, Jafar A, Appl. Nanosci., 10, 1603, 2020
  42. Giordano N, Bart JCT, Vaghi A, Castelian A, Martinotti G, J. Catal., 36, 81, 1975
  43. Groen JC, Peffer LAA, Perez-Ramırez J, Microporous Mesoporous Mater., 60, 1, 2003