Issue
Korean Chemical Engineering Research,
Vol.60, No.1, 151-158, 2022
귀금속 촉매에서 사용되는 질소 전구체가 산소 환원 반응의 활성에 미치는 영향
Effect of Nitrogen Precursors in Non-precious Metal Catalysts on Activity for the Oxygen Reduction Reaction
고가의 귀금속 촉매는 고분자 전해질 연료전지의 상업화에 걸림돌로 인식되어 저가의 비귀금속 촉매 연구가 활발하다. 본 연구에서는 Fe-N-C 촉매를 킬레이팅이 가능한 4가지 다른 질소 전구체 N,N,N’,N’-detramethylethylenediamine (TMEDA), 1,2-ethylenediamine (EDA), m-dicyanobenzene (DCB), dicyandiamide (DCDA)를 이용하여 700, 800, 900, 1000 °C에서 합성하였다. 촉매의 물리적 특성은 주사전자현미경, X선 회절분석기, 자동원소분석기를 이용하여 분석하였다. 이를 통해 촉매 표면 형태 및 원소의 분산도와 에너지 분산형 X-선 분광을 적용하여 Fe의 함량을 확인하였다. 또한 비금속 원소의 함량과 Fe의 담지 여부 등을 확인하였다. 전기화학적 특성은 순환 전압전류법과 선형주사전위법을 통해 촉매의 전기화학적 산소 환원에 대한 활성과 전자전달수 등을 분석하였다. 결과에 따르면 질소 전구체로 EDA를 사용하여 800 °C의 소성온도에서 합성한 촉매가 가장 높은 산소 환원 활성을 보였다. 이 연구 결과는 고가의 귀금속을 대체하기 위한 노력에 도움이 될 것으로 예상된다.
Iron and nitrogen coordinated carbon catalyst (Fe-N-C) is the most promising non-precious metal catalyst (NPMC) studied to alternate the Pt-group oxygen reduction reaction (ORR) catalyst. In this work, Fe/N/C type catalysts are prepared by four different nitrogen precursors; N, N, N’, N’-tetramethylethylenediamine (TMEDA), 1,2-ethylenediamine (EDA), m-dicyanobenzene (DCB), dicyandiamide (DCDA) which can chelate a transition metal; In addition, the catalysts conducted the pyrolysis process at four different temperatures of 700, 800, 900, 1000 °C to investigate the ORR activities depend on pyrolysis temperature and to find an appropriate temperature. The characterizations of catalysts were investigated by scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS), X-ray diffraction (XRD), and element analysis (EA). The electrocatalytic activity was measured by ORR polarization, also the electron transfer number was calculated from the slope of the K-L plot. The FeNC-EDA-800 which were prepared at pyrolysis temperature of 800 °C with EDA showed better ORR activity than the other catalysts.
[References]
  1. Jung WS, Lee WH, Oh HS, Popov BN, J. Mater. Chem. A, 8(38), 19833, 2020
  2. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, , Chem. Rev., 107(10), 3904, 2007
  3. Li Z, Liang X, Gao Q, Zhang H, Xiao H, Xu P, Zhang T, Liu Z, Carbon, 154, 466, 2019
  4. Baglione ML, University of Michigan, PhD dissertation (2007).
  5. Eren Y, Erdinc O, Gorgun H, Uzunoglu M, Vural B, Int. J. Hydrog. Energy, 34(20), 8681, 2009
  6. Lefevre M, Proietti E, Jaouen F, Dodelet JP, Science, 324, 71, 2009
  7. Tu Z, Wang C, J. Alloy. Compd., 843, 155809, 2020
  8. Jung WS, Popov BN, ACS Sustain. Chem. Eng., 5(11), 9809, 2017
  9. Gewirth AA, Varnell JA, DiAscro AM, Chem. Rev., 118(5), 2313, 2018
  10. Zhang XR, Mollamahale YB, Lyu DD, Liang LZ, Yu F, Qing M, Du YH, Zhang XY, Tian ZQ, Shen PK, J. Catal., 372, 245, 2019
  11. Li J, Chen S, Li W, Wu R, Ibraheem S, Li J, Ding W, Li L, Wei Z, J. Mater. Chem. A, 6(32), 15504, 2018
  12. Batool SS, Gilani SR, Zainab SS, et al., Polyhedron, 178, 114346, 2020
  13. Lee SJ, Kim SH, Lee SJ, Park NK, Lee JT, Kang M, Ceram. Int., 38(8), 6685, 2012
  14. Garcia A, Retuerto M, Dominguez C, et al., Appl. Catal. B: Environ., 264, 118507, 2020
  15. Kose M, Hepokur C, Karakas D, McKee V, Kurtoglu M, Polyhedron, 117, 652, 2016
  16. Ahmed MS, Begum H, Kim YB, J. Power Sources, 451, 227733, 2020
  17. Fofana D, Natarajan SK, Hamelin J, Benard P, Energy, 64, 398, 2014
  18. Mao ZX, Wang MJ, Liu L, Peng L, Chen S, Li L, Li J, Wei Z, Chinese J. Catal., 41(5), 799, 2020
  19. Zhong G, Xu S, Liu L, Zheng CZ, Dou J, Wang F, Fu X, Liao W, Wang H, ChemElectroChem, 7(5), 1107, 2020
  20. Matter PH, Zhang L, Ozkan US, J. Catal., 239(1), 83, 2006
  21. Huang Y, Liu K, Kan S, Liu P, Hao R, Liu W, Wu Y, Liu H, Liu M, Liu K, Carbon, 171, 1, 2021
  22. Zhang X, Wang Y, Wang K, Huang Y, Lyu D, Yu F, Wang S, Tian ZQ, Shen PK, Jiang SP, Chem. Eng. J., 416, 129096, 2021
  23. Zhou S, Qin J, Zhao X, Yang J, Chinese J. Catal., 42(4), 571, 2021
  24. Sun M, Wu X, Deng X, Zhang W, Xie Z, Huang Q, Huang B, Mater. Lett., 220, 313, 2018
  25. Sun RM, Yao YQ, Wang AJ, Fang KM, Zhang L, Feng JJ, J. Colloid Interface Sci., 592, 405, 2021
  26. Leng L, Xu S, Liu R, Yu T, Zhuo X, Leng S, Xiong Q, Huang H, Bioresour. Technol., 298, 122286, 2019
  27. Palm I, Kibena-Poldsepp E, Maeorg U, et al., Electrochem. Commun., 125, 2021
  28. Huang X, Wu X, Niu Y, Dai C, Xu M, Hu W, Catal. Sci. Technol., 9(3), 711, 2019
  29. Gazulla MF, et al., “Nitrogen Determination by SEM-EDS and Elemental Analysis,” X-Ray Spectrom., 42(5), 394 (2013).
  30. Jung WS, Popov BN, Catal. Today, 295, 65, 2017
  31. Jung WS, Kim Y, Noh Y, Han H, Park S, Lee J, Kim WB, Chem. Phys. Lett., 708, 42, 2018
  32. Subramanian NP, Li XG, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G, Lee JW, Popov BN, J. Power Sources, 188(1), 38, 2009
  33. Li XG, Popov BN, Kawahara T, Yanagi H, J. Power Sources, 196(4), 1717, 2011
  34. Carrillo-Rodriguez JC, Garay-Tapia AM, Escobar-Morales B, et al., Int. J. Hydrog. Energy, 46(51), 26087, 2021
  35. Zhao H, Zhang Y, Li L, Geng X, Yang H, Zhou W, Sun C, An B, Chinese Chem. Lett., 32(1), 140, 2021
  36. Lo Vecchio C, Arico AS, Monforte G, Baglio V, Renew. Energy, 120, 342, 2018
  37. Mehmood A, Ali B, Gong M, Kim GM, Kim JY, Bae JH, Kucernak A, Kang YM, Nam KW, J. Colloid Interface Sci., 596, 148, 2021
  38. Wu Z, Li W, Xia Y, Webley P, Zhao D, J. Mater. Chem., 22(18), 8835, 2012