Issue
Korean Chemical Engineering Research,
Vol.60, No.1, 139-144, 2022
얇은 오일쉘 이중에멀젼을 이용한 고효율 단분산성 하이드로젤 마이크로 입자 생산
Highly Efficient Production of Monodisperse Poly(ethylene glycol) (PEG) Hydrogel Microparticles by Utilizing Double Emulsion Drops with a Sacrificial Thin Oil Shell
본 연구는 미세유체기술을 기반으로 매우 간단하고 효율적인 단분산성 하이드로젤 마이크로 입자 제조 방법을 제안하였다. 구체적으로, 유리모세관 미세유체장치 내에서 형성된 이중에멀젼은 자외선기반 자유라디칼 중합에 의해 빠르게 고형화가 이루어진다. 수용액에 분산됨과 동시에 계면활성제의 부족으로 인해 얇은 오일쉘은 자발적으로 분리되어, 단분산성 하이드로젤 입자를 형성하였다(C.V.=1%). 본 연구의 결과는 water-in-oil (w/o) 단일에멀젼 기반의 제조 방법과 달리 오일 부피를 최소한으로 사용하여 크기 및 조성 제어가 가능한 단분산성 하이드로젤 입자의 제조가 달성될 수 있음을 보여준다. 마지막으로, 상도표를 기반으로 미세유체장치 내 유동 패턴에 대한 심층 연구는 상대적인 부피 유속들 간의 중요한 상관관계를 나타내며 하이드로젤 마이크로 입자의 안정적인 제조를 위한 실험적 근거를 제시하였다.
This study reports a microfluidic approach to produce monodisperse hydrogel microparticles in a simple and highly efficient manner. Specifically, we produce double emulsion drops with a thin oil shell surrounding an aqueous prepolymer solution, which is solidified via UV-induced free radical polymerization. When they are dispersed in an aqueous solution, the oil shell is dewetted due to the absence of surfactants, resulting in production of highly uniform hydrogel microparticles (C.V.=1%). Results show that production of monodisperse hydrogel microparticles with controllable size and composition can be achieved with minimal use of oil unlike water-in-oil (w/o) single emulsionbased approach. Furthermore, in-depth study of flow patterns in microfluidic device using a phase diagram exhibits a crucial relationship among relative flow rates while providing windows of readily controllable parameters for reliable manufacturing of hydrogel microparticles.
[References]
  1. Ahmed EM, Journal of Advanced Research, 6(2), 105 (2015).
  2. Hoare TR, Kohane DS, Poly., 49(8), 1993, 2008
  3. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K, Prog. Polym. Sci, 33(4), 448, 2008
  4. Le Goff GC, Srinivas RL, Hill WA, Doyle PS, European Polymer Journal, 72, 386, 2015
  5. Wang J, Mignon A, Snoeck D, Wiktor V, Van Vliergerghe S, Boon N, De Belie N, Front Microbiol, 6, 1088, 2015
  6. Hoffman AS, Adv. Drug Deliv. Rev., 64, 18, 2012
  7. Nguyen KT, West JL, Biomaterials, 23(22), 4307, 2002
  8. Peppas NA, Hilt JZ, Khademhosseini A, Langer R, Adv. Mater., 18(11), 1345, 2006
  9. Shrestha P, Regmi S, Jeong JH, Journal of Pharmaceutical Investigation, 50(1), 29 (2020).
  10. Zhao CX, Adv. Drug Deliv. Rev., 65(11), 1420, 2013
  11. Li J, Mooney DJ, Nature Reviews Materials, 1(12), 16071, 2016
  12. Du Y, Le E, Ali S, Khademhosseini A, Proceedings of the National Academy of Sciences, 105(28), 9522(2008).
  13. Hoffmann JC, West JL, Soft Matter, 6(20), 5056, 2010
  14. Tekin H, Tsinman T, Sanchez JG, Jones BJ, Camci-Unal G, Nichol JW, Langer R, Khademhosseini A, Journal of the American Chemical Society, 133(33), 12944 (2011).
  15. Yeh J, Ling Y, Karp JM, Gantz J, Chandawarkar A, Eng G, Blumling J, Langer R, Khademhosseini A, Biomaterials, 27(31), 5391, 2006
  16. Garstecki P, Fuerstman M, Stone H, Whitesides G, Lab Chip, 6, 437, 2006
  17. Tan WH, Takeuchi S, Adv. Mater., 19(18), 2696, 2007
  18. Thorsen T, Roberts R, Arnold F, Quake S, Phys. Rev. Lett., 86, 4163, 2001
  19. Choi CH, Jung JH, Hwang TS, Lee CS, Macromol. Res., 17(3), 163, 2009
  20. Foster GA, Headen DM, Gonzalez-Garcia C, Salmeron-Sanchez M, Shirwan H, Garcia AJ, Biomaterials, 113, 170, 2017
  21. Lee JN, Park C, Whitesides GM, Analytical Chemistry, 75(23), 6544, 2003
  22. Pittermannova A, Ruberova Z, Zadrazil A, Bremond N, Bibette J, Stepanek F, RSC Adv., 6(105), 103532, 2016
  23. Noudeh G, Khazaeli P, Mirzaei S, Sharififar F, SN, Journal of Biological Sciences, 9, 423 (2009).