Issue
Korean Chemical Engineering Research,
Vol.60, No.1, 100-115, 2022
통합 하이브리드시스템을 활용한 폐가스 처리 거동
Time-Dependent Behavior of Waste-Air Treatment Using Integrated Hybrid System
교대로 운전되는 광촉매반응기 공정 및 바이오필터 공정[전통적 바이오필터(L 반응기)와 두 개의 유닛(Rup 및 Rdn)을 가지는 개선된 바이오필터(R 반응기)]으로 구성된 통합 하이브리드시스템(통합처리시스템)에서 에탄올과 황화수소를 동시 함유한 폐가스 처리를 성공적으로 수행하였다. 통합처리시스템의 운전 단계로서 HA1, HA2 및. 폐가스의 공급 방향이 뒤바뀐 HA3T stage의 광촉매 공정에서 각각 55, 50 및 45%의 에탄올 제거효율과 각각 70, 60 및 37%의 황화 수소 제거효율을 보였다. 특히, HA3T stage에서 통합처리시스템으로 공급되는 폐가스(feed)의 황화수소 농도가 10 ppmv에서 20 ppmv로 급증함에 따른 황화수소 부하량의 증가로 인하여 특히 황화수소 제거효율의 급격한 감소를 관찰하였다. 통합처리시스템의 HA1, HB1, HA2 및 HB2 stage 및 HA3T stage의 초반에, 개선된 바이오필터(R 반응기)의 각 유닛에 설치한 sampling 구들의 에탄올의 파과 순서 및 에탄올 처리효율의 크기 순서는, HA3T stage 후반과 HB3T stage의 경우에서 각각 거꾸로 바뀌었다. 한편 개선된 바이오필터(R 반응기)에서 황화수소의 경우는 파과 정도가 에탄올의 경우만큼 두드러지지는 않았으나 비슷한 추세가 관찰되었다.
In this study, integrated hybrid system (IHS) composed of two alternatively-operating UV/photocatalytic reactor (AOPR) process and biofilter processes of a biofilter system having two units (i.e., Rup and Rdn) with an improved design (R reactor) and a conventional biofilter (L reactor) was constructed, and its transient behavior was observed to perform the successful treatment of waste air containing ethanol and hydrogen sulfide (H2S). At the IHS-operating stages of HA1, HA2 and HA3T of reversed feed direction, the AOPR process showed not only ethanol-removal efficiencies of 55, 50 and 45%, respectively, but also H2S-removal efficiencies of 70, 60 and 37%, respectively. In particular, a drastic decrease of H2S-removal efficiency at the stage of HA3T was observed due to a doubling of H2S-inlet concentration fed to AOPR from 10 ppmv to 20 ppmv at the stage of HA3T. The order of ethanol-breakthroughs and the order of the magnitude of ethanol-removal efficiencies at the sampling ports of each unit of R reactor at the stages of HA1, HB1, HA2, HB2, and the first half of HA3T, were reversed, respectively, at the stages of the second half of HA3T and HB3T. In case of H2S, R reactor did not show H2S-breakthrough as prominent as the ethanol-breakthrough, but showed the trend similar to the ethanol-breakthrough.
[References]
  1. Davil FM, Rostami R, Zarei A, Feizizadeh M, Mahdavi M, Mohammadi AA, Eskandari D, J. Babol Univ. Med. Sci., 14, 50, 2012
  2. Yunesian M, Rostami R, Zarei A, Fazlzadeh M, Janjani H, Microchem. J., https ://doi. org/10.1016/j.micro c.2019.104174 (2019).
  3. Fulazzaky MA, Talaiekhozani A, Ponraj M, Abd Majid M, Hadibarata T, Goli A, Desalination Water Treat., 52, 3600, 2014
  4. Chen Z, Peng Y, Chen J, Wang C, Yin H, Wang H, You C, Li J, Environ. Sci. Technol., 54(22), 14465, 2020
  5. Jeon JW, Lee DH, Won YS, Lee MG, Korean J. Chem. Eng., 35(3), 744, 2018
  6. Khodadadian F, de Boer MW, Poursaeidesfahani A, van Ommen JR, Stankiewicz AI, Lakerveld R, Chem. Eng. J., 333, 456, 2018
  7. Lim KH, Lee EJ, “Visible Ray Utilizing Devices to Treat Waste-air,” Korean Patent No. 10-1275428(2013).
  8. Lee EJ, Lim KH, Korean Chem. Eng. Research, 59(4), 574, 2021
  9. Lee EJ, Chung CH, Lim KH, Korean Chem. Eng. Res., 59(4), 584, 2021
  10. Chen Z, Peng Y, Chen J, Wang C, Yin H, Wang H, You C, Li J, Environ. Sci. Technol., 54(22), 14465, 2020
  11. Ghasemi R, Golbabaei F, Rezaei S, Pourmand MR, Nabizadeh R, Jafari MJ, Massorian E, AMB Epr., 10(8), 2020
  12. Shareefdeen Z, Korean J. Chem. Eng., 32(1), 15, 2015
  13. Lee EJ, Lim KH, Korean J. Chem. Eng., 29(10), 1373, 2012
  14. Alfonsin C, Hernandez J, Omil F, Prado OJ, Gabriel D, Feijoo G, Moreira MT, J. Environ. Manag., 129, 463, 2013
  15. Kennes C, Rene ER, Veiga MC, J. Chem. Technol. Biotechnol., 84(10), 1419, 2009
  16. Yang CP, Suidan MT, Zu XQ, Kim BJ, Water Sci. Tech., 48, 89, 2003
  17. Moe WM, Irvine RL, J. Environ. Eng., 126, 826, 2000
  18. Kenes C, Veiga MC, Rev. Environ. Sci. Biotechnol., 1, 201, 2002
  19. Yang CP, Suidan MT, Zu XQ, Kim BJ, Environ. Prog., 22, 87, 2003
  20. Dorado AD, Baeza JA, Lafuente J, Gabriel D, Gamisans X, Chem. Eng. J., 209, 661, 2012
  21. Lee EJ, Lim KH, Korean Chem. Eng. Res., 51(1), 127, 2013
  22. Lim KH, Lee EJ, Korean Patent No. 10-0942147(2010).
  23. Wright WF, Chem. Eng. J., 113(2-3), 161, 2005
  24. Znad HT, Katoh K, Kawase Y, J. Hazard. Mater., 141(3), 745, 2007
  25. Lim KH, Park SW, Lee EJ, Hong SH, Korean J. Chem. Eng., 22(1), 70, 2005
  26. Mohseni M, Prieto L, IJETM, 9, 47, 2008
  27. Wei ZS, Sun JL, Xie ZR, Liang MY, Chen SZ, J. Hazard. Mater., 177(1-3), 814, 2010
  28. Hinojosa-Reyes M, Rodriguez-Gonzalez V, Arriaga S, J. Hazard. Mater., 209-210, 365, 2012
  29. Palau J, Penya-Roja JM, Gabaldon C, Alvarez-Hornos FJ, Martinez-Soria V, J. Chem. Technol. Biotechnol., 87(1), 65, 2012
  30. Saucedo-Lucero JO, Arriaga S, J. Chem. Technol. Biotechnol., 90(5), 907, 2015
  31. Zeng P, Li J, Liao D, Tu X, Xu M, Sun G, Environ. Technol., 37, 237, 2016
  32. Lee EJ, Lim KH, Korean Chem. Eng. Res., 51(2), 272, 2013
  33. Lee EJ, Lim KH, J. Chem. Eng. Jpn., 46(9), 636, 2013
  34. Lee EJ, Lim KH, Korean Chem. Eng. Res., 52(2), 191, 2014
  35. Lee EJ, Lim KH, Korean Chem. Eng. Res., 48(3), 382, 2010
  36. 4500-S2- D. Methylene Blue Method, American Water Works Association (AWWA), and the Water Environment Federation (WEF).
  37. 4500-SO 3 2- B. Iodometric Method, American Water Works Association (AWWA), and the Water Environment Federation (WEF).
  38. Andronic L, Enesca A, Front. Chem., 8, 565489, 2020
  39. Lee K, Mazare A, Schmuki P, Chem. Rev., 114(19), 9385, 2014
  40. Holleman AF, Wiberg E, Wiberg N, Inorganic Chemistry, Academic Press, San Diego, ISBN 9780123526519 (2001).
  41. Chung YC, Huang C, Tseng CP, J. Biotechnol., 52, 31, 1996