Issue
Korean Chemical Engineering Research,
Vol.60, No.1, 62-69, 2022
전기화학 증착법을 이용한 그래핀 개질 Indium Tin Oxide 전극 제작 및 효소 전극에 응용
Fabrication of Graphene-modified Indium Tin Oxide Electrode Using Electrochemical Deposition Method and Its Application to Enzyme Electrode
그래핀은 부피에 비해 표면적이 넓고 뛰어난 기계적 물성과 전기전도성을 가지며 생체적합성이 우수하다. 본 연구에서는 전기화학적 방법을 이용하여 indium tin oxide (ITO) 글래스 슬라이드 표면에 산화그래핀을 증착·환원시킨 전극을 제작하였고 그래핀으로 표면 개질된 ITO의 전기화학적 특성을 조사하였다. 산화그래핀의 증착과 환원에 순환전압전류법을 사용하였다. 주사전자현미경과 에너지 분산형 X-선 분광법을 사용하여 그래핀이 코팅된 ITO 표면을 관찰하였다. 순환전압전류법과 전기화학 임피던스 분광법을 사용하여 제작된 전극들의 전기화학 특성을 평가하였다. 사이클 수와 주사 속도는 산화그래핀 증착과 환원도에 상당한 영향을 미쳤으며 제작된 전극의 전기화학 특성도 달랐다. ITO 전극에 비하여 그래핀으로 표면 개질된 ITO는 전극 계면에서의 전하 전달 저항이 낮았고 더 많은 전류를 생산하였다. 그래핀으로 표면 개질된 ITO 표면에 고정화된 포도당 산화효소는 포도당을 산화시키며 성공적으로 전자들을 생성하였다.
Graphene has a large surface area to volume ratio and good mechanical and electrical property and biocompatibility. This study described the electrochemical deposition and reduction of graphene oxide on the surface of indium tin oxide (ITO) glass slide and electrochemical characterization of graphen-modified ITO. Cyclic voltammetry was used for the deposition and reduction of graphene oxide. The surface of graphen-coated ITO was characterized using scanning electron microscopy and energy dispesive X-ray spectroscopy. The electrodes were evaluated by performing cyclic voltammetry and electrochemical impedance spectroscopy. The number of cycles and scan rate greatly influenced on the coverage and the degree of reduction of graphene oxide, thus affecting the electrochemical properties of electrodes. Modification of ITO with graphene generated higher current with lower charge transfer resistance at the electrode-electrolyte interface. Glucose oxidase was immobilized on the graphene-modified ITO and has been found to successfully generate electrons by oxidizing glucose.
[References]
  1. Zebda A, Alcaraz JP, Vadgama P, Shleev S, Minteer SD, Boucher F, Cinquin P, Martin DK, Bioelectrochemistry, 124, 57, 2018
  2. Liu Y, Li X, Chen J, Yuan C, Front. Chem., 8, 573865, 2020
  3. Cosnier S, Goff AL, Holzinger M, Electrochem. Commun., 38, 19, 2014
  4. Masikini M, Ghica ME, Baker PGL, Iwuoha EI, Brett CM, Electroanalysis, 31, 1, 2019
  5. Oliveira TMBF, Morais S, Appl. Sci., 8, 1925, 2018
  6. Gao F, Viry L, Maugey MM, Poulin P, Mano N, Nat. Commun., 1, 2, 2010
  7. Lipinska W, Nanomaterials, 11, 1156, 2021
  8. Hitaishi VP, Mazurenko L, Murali AV, Poulpiquet A, Coustillier G, Delaporte P, Lojou E, Front. Chem., 8, 431, 2020
  9. Ambrosi A, Chua CK, Latiff NM, Loo AH, Wong CHA, Eng AYS, Bonanni A, Pumera M, Chem. Soc. Rev., 45, 2458, 2016
  10. Basirun WJ, Sookhakian M, Baradaran S, Mahmoudian MR, Ebadi M, Nanoscale. Res Lett., 8, 397, 2013
  11. Biswal HJ, Vundavillu PR, Gupta A, J. Electorchem, Soc., 167, 146501, 2020
  12. Yang S, Lu Z, Luo S, Liu C, Tang Y, Microchim. Acta., 180, 127, 2013
  13. Hilder M, Winther-Jensen B, Li D, Forsyth M, Mac-Farlane DR, Phys. Chem. Chem. Phys., 13, 9187, 2011
  14. Li Y, Martens I, Cheung KC, Bizzotto D, Electrochim. Acta, 319, 649, 2019
  15. Garcia-Gomez A, Duarte RG, Eugenio S, Silva TM, Carmezim MJ, Montemor MF, J. Electroanal. Chem., 755, 151, 2015
  16. Mani V, Devadas B, Chen SM, Biosens. Bioelectron., 41, 309, 2013
  17. Zhu W, Gao H, Zheng F, Huang T,Wu F, Wang H, Int. J. Energy Res., 1 (2019).
  18. Yang J, Strickler JR, Gunasekaran S, Nanoscale., 4, 4594, 2012
  19. Haque AMJ, Park H, Sung D, Jon S, Choi SY, Kim K, Anal. Chem., 84, 1871, 2012
  20. Moghazi MAA, Shareef SA, Wong HYM, Zaman M, Am. J. Appl. Sci., 14, 324, 2017
  21. Jeon WY, Choi YB, Kim HH, Sensors., 15, 31083, 2015
  22. Chen L, Tang Y, Wang K, Liu C, Luo S, Electrochem. Commun., 13, 133, 2011
  23. Wang Z, Zhou X, Zhang J, Boey F, Zhang H, J. Phys. Chem. Lett., 113, 14071, 2009
  24. Yang Y, Strickler JR, Gunasekaran S, Nanoscale, 4, 4094, 2012
  25. Dharuman V, Hahn JH, Jayakumar K, Teng W, Electrochim. Acta, 114, 590, 2013
  26. Ambrosi A, Chua CK, Bonanni A, Pumera M, Chem. Rev., 114(14), 7150, 2014
  27. Rui BZ, Yang MY, Zhang L, Jia Y, Shi Y, Histed R, Liao YL, Xie JJ, Lei F, Fan LC, J. Appl. Electrochem., 50(4), 407, 2020
  28. Pham HD, Pham VH, Oh ES, Chung JS, Kim S, Korean J. Chem. Eng., 29(1), 125, 2012
  29. Glass DE, Prakash GK, Electroanalysis, 30, 1, 2018
  30. Cui F, Zhang X, J. Solid State Electrochem., 17, 167, 2013
  31. Brainina KZ, Tarasov AV, Vidrevich MB, Chemosensors, 8, 15, 2020
  32. Gong K, Xu F, Grunewald JB, Ma X, Zhao Y, Gu S, Yan Y, ACS Energy Lett., 1, 89, 2016
  33. Szroeder P, Tsierkezos NG, Walczyk M, et al., J. Solid State Electrochem., 18, 2555, 2014
  34. Pruna AL, Rosas-Laverde NM, Mataix DB, Materials, 13, 624, 2020
  35. Azman NZM, Zainai PNS, Ahmad SAA, Plos One, 15, e02341, 2020
  36. Donini CA, Silva MKL, Bronzato GR, Leao AL, Cesarino I, J. Solid State Electrochem., 24, 2011, 2020
  37. Haque S, Nasa A, Inamuddin, Rahman MM, Sci. Rep., 10, 10428, 2020