Issue
Korean Chemical Engineering Research,
Vol.60, No.1, 34-50, 2022
재생에너지 기반 청정 수소 운송 에너지 시스템 모사 연구
Simulation Study of Renewable Power based Green Hydrogen Mobility Energy Supply Chain Systems
파리 기후 협약 이후 온실 가스 감축은 전세계적으로 가장 중요한 문제이다. 특히 상당한 온실 가스를 배출하는 교통운송 부문의 화석 연료 감축이 시급하다. 본 논문에서는 이에 대한 대안으로 재생에너지원에서 생산된 전기 에너지로 수소를 생산하여 수소 자동차에 연료로 공급하는 그린 모빌리티 에너지 시스템의 경제성을 검토하였다. 시스템 설계에 필요한 재생에너지 발전, 수전해 통한 수소 생산, 수소 저장과 충전소 등 여러가지 결정사항들에 대해 9 가지 시나리오를 구성하여 그에 대한 최적 설계 및 운영 비용을 분석하였다. 본 연구에서 얻어진 경험은 현실적 수소 에너지 시스템을 구축하는데 활용될 수 있을 것이다.
Since the Paris climate agreement, reducing greenhouse gases has been the most important global issue. In particular, it is necessary to reduce fossil fuels in the mobility sector, which accounts for a significant portion of total greenhouse gas emissions. In this paper, we investigated the economic feasibility of green mobility energy supply chains, which supply hydrogen as fuel to hydrogen vehicles based on electricity from renewable energy sources. The design and operation costs were analyzed by evaluating nine scenarios representing various combinatorial possibilities such as renewable energy generation, hydrogen production through water electrolytes, hydrogen storage and hydrogen refueling stations. Simulation calculations were made using Homer Pro, widely used commercial software in the field. The experience gained in this study could be further utilized to construct actual hydrogen energy systems.
[References]
  1. https://www.mofa.go.kr/www/wpge/m_20150/contents.do.
  2. https://www.kotems.or.kr/app/kotems/forward?pageUrl=kotems/ptl/emission/internal/KotemsPtlEmissionInternalEmissionSectorLs&topmenu1=01&topmenu2=02&topmenu3=02
  3. Ajanovic A, Haas R, Energy Policy, 123, 280, 2018
  4. Manoharan Y, Hosseini SE, Butler B, Alzhahrani H, Senior BTF, Ashuri T, Krohn J, Appl. Sci., 9, 2296, 2019
  5. Olatomiwa L, Mekhilef S, Ismail MS, Moghavvemi M, Renew. Sust. Energ. Rev., 62, 821, 2016
  6. Karakoulidis K, Mavridis K, Bandekas DV, Adoniadis P, Potolias C, Vordos N, Renew. Energy, 36(8), 2238, 2011
  7. Ashourian MH, Cherati SM, Zin AAM, Niknam N, Mokhtar AS, Anwari M, Renew. Energy, 51, 36, 2013
  8. Ajlan A, Tan CW, Abdilahi AW, Renew. Sust. Energ. Rev., 75, 559, 2017
  9. Odou ODT, Bhandari R, Adamou R, Renew. Energy, 145, 1266, 2020
  10. Quarton CJ, Samsatli S, Renew. Sust. Energ. Rev., 98, 302, 2018
  11. Thema M, Bauer F, Sterner M, Renew. Sust. Energ. Rev., 112, 775, 2019
  12. Silva SB, Severino MM, de Oliveira MAG, Renew. Energy, 57, 384, 2013
  13. Karellas S, Tzouganatos N, Renew. Sust. Energ. Rev., 29, 865, 2014
  14. Chade D, Miklis T, Dvorak D, Renew. Energy, 76, 204, 2015
  15. Rezk H, Dousoky GM, Renew. Sust. Energ. Rev., 62, 941, 2016
  16. Duman AC, Guler O, Sustain. Cities Soc., 42, 107, 2018
  17. Razmjoo A, Kaigutha LG, Rad MAV, Marzband M, Davarpanah A, Denai M, Renew. Energy, 164, 46, 2021
  18. https://www.homerenergy.com/.
  19. Sinha S, Chandel SS, Renew. Sust. Energ. Rev., 32, 192, 2014
  20. Rohani A, Mazlumi K, Kord H, 2010 18th Iranian Conference on Electrical Engineering, May, Isfahan(2010).
  21. Dursun B, Renew. Sust. Energ. Rev., 16, 6183, 2012
  22. Li C, Ge XF, Zheng Y, Xu C, Ren Y, Song CG, Yang CX, Energy, 55, 263, 2013
  23. Dawood F, Shafiullah G, Anda M, Sustainability, 12, 2041, 2020
  24. Kalinci Y, Hepbasli A, Dincer I, Int. J. Hydrog. Energy, 40(24), 7652, 2015
  25. Fazelpour F, Soltani N, Rosen MA, Int. J. Hydrog. Energy, 41(19), 7732, 2016
  26. Isa NM, Das HS, Tan CW, Yatim AHM, Lau KY, Energy, 112, 75, 2016
  27. Singh A, Baredar P, Gupta B, Energy Conv. Manag., 145, 398, 2017
  28. Das HS, Tan CW, Yatim A, Lau KY, Renew. Sust. Energ. Rev., 76, 1332, 2017
  29. Islam MS, Sustain. Cities Soc., 38, 492, 2018
  30. Rezk H, Sayed ET, Al-Dhaifallah M, Obaid M, El-Sayed AM, Abdelkareem MA, Olabi AG, Energy, 175, 423, 2019
  31. Arevalo P, Benavides D, Lata-Garcia J, Jurado F, Sustain. Cities Soc., 52, 101773, 2020
  32. Vendoti S, Muralidhar M, Kiranmayi R, Energy Rep., 6, 594, 2020
  33. Ekren O, Canbaz CH, Guvel CB, J. Clean Prod., 279, 123615, 2021
  34. Baek JH, Han SK, Kim DS, Han DH, Lee HS, Cho SH, KIEE, 66, 757, 2017
  35. Buttler A, Spliethoff H, Renew. Sust. Energ. Rev., 82, 2440, 2018
  36. Hawng GJ, Choi HS, Membr. J., 27, 477, 2017
  37. Yu TJ, “Total Registered Moter Vehicles,” KOTSA, (2020).
  38. “Average Mileage of Automobile,” KOTSA, 54(2018).
  39. https://www.hyundai.com/kr/ko/e/vehicles/nexo/spec.
  40. https://data.kma.go.kr/cmmn/main.do.
  41. Charabi Y, Abdul-Wahab S, Renew Wind Water Sol, 7, 5, 2020
  42. https://en.wind-turbine-models.com/.
  43. https://www.homerenergy.com/products/pro/docs/latest/index.html.
  44. Manwell JF, McGowan JG, Rogers AL, Wind Energy Explained: Theory, Design and Application, 2nd ed., Wiley, USA, NJ (2009).
  45. Jahangir MH, Shahsavari A, Rad MAV, J. Clean Prod., 262, 121250, 2020
  46. Lata-Garcia J, Jurado F, Fernandez-Ramirez LM, Sanchez-Sainz H, Energy, 159, 611, 2018
  47. Gokcek M, Kale C, Energy Conv. Manag., 161, 215, 2018
  48. Fragiacomo P, Genovese M, Int. J. Hydrog. Energy, 45, 27457, 2020
  49. http://www.khydi.or.kr/sub/situation02.html.
  50. https://ecos.bok.or.kr/EIndex.jsp.