Issue
Korean Chemical Engineering Research,
Vol.60, No.1, 7-11, 2022
PEMFC 고분자막의 어닐링 온도가 내구성에 미치는 영향
Effect of Annealing Temperature on the Durability of PEMFC Polymer Membrane
고분자전해질 연료전지의(PEMFC)의 제막 과정에서 성능 및 내구성을 위해 건조와 어닐링의 열처리 과정이 필요하다. 본 연구에서는 고분자막 내구성 향상을 위한 최적의 어닐링 온도에 대해 연구하였다. 125~175 °C 온도 범위에서 어닐링하였고, 각 어닐링 온도에서 내구성의 기초 자료로 열 안정성 및 수소투과도를 측정하였다. 펜톤 반응과 OCV holding에 의해 전기화학적 내구성을 분석했다. 165 °C 어닐링 온도가 열 안정성과 수소투과도 면에서 최적의 온도였다. 펜톤 반응에서 165 °C에서 어닐링한 막의 불소유출속도가 제일 낮고, OCV holding 실험에서도 165 °C에서 어닐링한 막의 수명이 제일 길어, 165 °C 가 고분자막의 내구성을 위한 최적의 온도임을 확인했다.
In the membrane forming process of a proton exchange membrane fuel cell (PEMFC), drying and annealing heat treatment processes are required for performance and durability. In this study, the optimal annealing temperature for improving the durability of the polymer membrane was studied. It was annealed in the temperature range of 125~175 °C, and thermal stability and hydrogen permeability were measured as basic data of durability at each annealing temperature. The electrochemical durability was analyzed by Fenton reaction and open circuit voltage (OCV) holding. The annealing temperature of 165 °C was the optimal temperature in terms of thermal stability and hydrogen permeability. In the Fenton reaction, the fluorine emission rate of the membrane annealed at 165 °C was the lowest, and the lifespan of the membrane annealed at 165 °C was the longest in the OCV holding experiment, confirming that 165 °C was the optimal temperature for the durability of the polymer membrane.
[References]
  1. Wang GJ, Yu Y, Liu H, Gong CL, Wen S, Wang XH, Tu ZK, Fuel Process. Technol., 179, 203, 2018
  2. Department of Energy, https://www.energy.gov, (2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedo.go.jp/english/index.html, (2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org, (2016).
  5. Ministry of Science and Technology of the People’s Republic of China, http://en.most.gov.cn/eng/index.htm, (2016).
  6. Kamila MR, Alexey MVP, Elena GA, Ivan RA, Dimitri IVA, and Vitaly SV, Key Eng. Mater., 869, 367, 2020
  7. Vengatesan S, Cho E, Kim HJ, Lim TH, Korean J. Chem. Eng., 26(3), 679, 2009
  8. Li JS, Yang X, Tang HL, Pan M, J. Membr. Sci., 361(1-2), 38, 2010
  9. Park JS, Shin MS, Sekhon SS, Choi YW, Yang TH, J. Korean Electrochem. Soc., 14(1), 9, 2011
  10. Robert CRM, Moore B, Anal. Chem., 58, 2569, 1986
  11. Robert CRM, Moore B, Macromolecules, 21, 1334, 1988
  12. Luan YH, Zhang YM, Zhang H, Li L, Li H, Liu YG, J. Appl. Polym. Sci., 107(1), 396, 2008
  13. DOE cell component accelerated stress test protocols for PEM fuel cells.
  14. Daido University, Ritsumeikian Univ., Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014).
  15. Lee HJ, Cho MK, Jo YY, Lee KS, KiM HJ, Cho EA, Kim SK, Henkensmeier D, Lim TH, Jang JH, Polym. Degrad. Stabil., 97(6), 1010, 2012
  16. Liang Z, Chen W, Liu J, Wang S, Zhou Z, Li W, Sun G, Xin Q, J. Membr. Sci., 233(1-2), 39, 2020