Issue
Korean Chemical Engineering Research,
Vol.59, No.4, 644-651, 2021
Refractive Index and Excess Volume for Diisopropylamine + Isomeric Butanol Mixtures in terms of Nakata and Sakurai model
Alkyl amines are widely used in various industries. Nowadays these are also used in CO2 capture technology because amines react with CO2 and remove it from the flue gas. To make the amines more compatible towards this technology, physico chemical properties may be altered by mixing with other solvents. In the present report, we measured the refractive properties of pure diisopropylamine (DIPA) (1) + isomeric butanol (2) at 298.15 K to 308.15 K. The Δn values were positive for DIPA + n-butanol or sec-butanol or isobutanol or tert-butanol mixtures. The measured data was correlated with Redlich-Kister equation. The excess molar volume data were predicted from refractive index data using Nakata and Sakurai model. The experimental data were also predicted by various correlations, and the prediction capability of these correlations was reported through standard deviation. Further, the deviation in refractive index (Δn) data was interpreted by the consideration of specific molecular interactions between DIPA and isomeric butanol.
[References]
  1. Cases AM, Marigliano ACG, Bonatti CM, Solimo HN, J. Chem. Eng. Data, 46, 712, 2001
  2. Marigliano ACG, Solimo HN, J. Chem. Eng. Data, 47(4), 796, 2002
  3. Marigliano ACG, Varetti EL, J. Phys. Chem. A, 106(6), 1100, 2002
  4. Patil SS, Mirgane SR, Arbad BR, Journal of Saudi Chemical Society, 18, 945 (2014).
  5. Mrad S, Lafuente C, Giner B, Hichri M, Thermochimica Acta, 655, 169, 2017
  6. Majstorovic DM, Zivkovic EM, Kijevcanin ML, J. Mol. Liq., 248, 219, 2017
  7. Gahlyan S, Bhagat P, Maken S, Park SJ, J. Mol. Liq., 306, 112859, 2020
  8. Kim MG, Park SJ, Hwang IC, Korean J. Chem. Eng., 25(5), 1160, 2008
  9. Noh HJ, Park SJ, In SJ, J. Ind. Eng. Chem., 16(2), 200, 2010
  10. Park SJ, Han KJ, Gmehling J, Fluid Phase Equilib., 200(2), 399, 2002
  11. Hwang IC, Park SJ, Han KJ, Fluid Phase Equilib., 309(2), 145, 2011
  12. Gahlyan S, Rani M, Devi R, Park SJ, Maken S, J. Mol. Liq., 306, 112605, 2020
  13. Gahlyan S, Rani M, Lee I, Moon I, Maken SK, Korean J. Chem. Eng., 32(1), 168, 2015
  14. Gahlyan S, Rani M, Maken S, J. Mol. Liq., 199, 42, 2014
  15. Chen YR, Caparanga AR, Soriano AN, Li MH, J. Chem. Thermodyn., 42(4), 518, 2010
  16. Rani M, Gahlyan S, Om H, Verma N, Maken S, J. Mol. Liq., 194, 100, 2014
  17. Chowdhury FI, Akhtar S, Saleh MA, Khandaker KU, Amin YM, Arof AK, J. Mol. Liq., 223, 299, 2016
  18. Smirnov VI, Badelin VG, Thermochim. Acta, 551, 145, 2013
  19. Sadeghi R, Azizpour S, J. Chem. Eng. Data, 56(2), 240, 2011
  20. Kim JI, Park SJ, Choi YY, Kim SB, J. Chem. Eng. Data, 56(5), 1798, 2011
  21. Hwang IC, Park SJ, Han KJ, In SJ, J. Ind. Eng. Chem., 18(1), 499, 2012
  22. Llovell F, Vilaseca O, Jung N, Vega LF, Fluid Phase Equilib., 360, 367, 2013
  23. Lee KH, Park SJ, Korean J. Chem. Eng., 35(1), 222, 2018
  24. Bhagat P, Maken S, Asian J. Chem., 32, 2443, 2020
  25. Bhagat P, Maken S, Journal of Molecular Liquids, In press 114640(2020).
  26. Brocos P, Pineiro A, Bravo R, Phys. Chem. Chem. Phys., 5, 550, 2003
  27. Devi R, Gahlyan S, Rani M, Maken S, Asian J. Chem., 30, 2054, 2018
  28. Arancibia EL, Katz M, Physics and Chemistry of Liquids, 26, 107 (1993).
  29. Xiao M, Cui D, Yang Q, Liang Z, Puxty G, Conway W, Feron P, International Journal of Greenhouse Gas Control, 82, 8 (2019).
  30. Patil MP, Vaidya PD, The Canadian Journal of Chemical Engineering, 98, 556 (2020).
  31. Patil MP, Vaidya PD, Chem. Eng. Commun., 207, 1440, 2020
  32. Gomez-Diaz D, Muniz-Mouro A, Navaza JM, Rumbo A, AIChE J., 67, e17071, 2021
  33. Vuksanovic JM, Bajic DM, Ivanis GR, et al., J. Serb. Chem. Soc., 79, 707, 2014
  34. Nakata M, Sakurai M, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83, 2449 (1987).
  35. Oswal SL, Oswal P, Gardas RL, Patel SG, Shinde RG, Fluid Phase Equilib., 216(1), 33, 2004
  36. Dubey GP, Sharma M, Dubey N, J. Chem. Thermodyn., 40(2), 309, 2008
  37. Vaid ZS, More UU, Oswal SB, Malek NI, Thermochim. Acta, 634, 38, 2016
  38. Alavianmehr MM, Hemmati N, Ghodrati H, Physics and Chemistry of Liquids, 55, 85 (2017).
  39. Rahul D, Sankar MG, Chand GP, Ramachandran D, J. Mol. Liq., 211, 386, 2015
  40. Nain AK, Srivastava T, Pandey JD, Gopal S, J. Mol. Liq., 149S, 9, 2009
  41. Outcalt SL, Laesecke A, Fortin TJ, J. Mol. Liq., 151, 50, 2010
  42. Bravo-Sanchez MG, Iglesias-Silva GA, Estrada-Baltazar A, Hall KR, J. Chem. Eng. Data, 55(6), 2310, 2010
  43. Spasojevic VD, Djordjevic BD, Serbanovic SP, Radovic IR, Kijevcanin ML, J. Chem. Eng. Data, 59(6), 1817, 2014
  44. Tanaka R, Toyama S, J. Chem. Thermodyn., 28(12), 1403, 1996
  45. Loras S, Monton JB, Espana F, J. Chem. Eng. Data, 42(5), 914, 1997
  46. Kumar H, J. Mol. Liq., 276, 562, 2019
  47. Dubey GP, Sharma M, J. Chem. Eng. Data, 52(2), 449, 2007
  48. Khanlarzadeh K, Iloukhani H, J. Chem. Thermodyn., 43(11), 1583, 2011
  49. Riddick JA, "Organic Solvents. Physical Properties and Methods of Purification, fourth ed., Wiley New York, 1986.
  50. Giner B, Artigas H, Carrion A, Lafuente C, Royo FM, J. Mol. Liq., 108, 303, 2003
  51. Kijevcanin ML, Radovic IR, Djordjevic BD, Tasic AZ, Serbanovic SP, Thermochim. Acta, 525(1-2), 114, 2011
  52. Ortega J, Espiau F, Postigo M, J. Chem. Eng. Data, 50(2), 444, 2005
  53. Gahlyan S, Rani M, Maken S, J. Mol. Liq., 219, 1107, 2016