Issue
Korean Chemical Engineering Research,
Vol.59, No.4, 542-547, 2021
저점도 액 통기 교반용 글라스라이닝 홈베이스 임펠러의 최적 형상
Optimum Geometry of Glass Lined HOMEBASE Impeller for Gas-Liquid System of Low Viscosity Liquid
글라스 라이닝 임펠러는 강산을 포함한 대부분의 화학물질들에 대해 내부식성이 있고, 또한 평활하고 눌어붙지 않는 표면을 가지며 세정이 용이하고 프로세스에 불순물들을 유입하지 않는 강점을 갖고 있다. 글라스 라이닝 HOMEBASE 임펠러는 저점도 유체에서 고점도 유체까지 폭넓은 점도 범위의 액체를 교반할 수 있도록 개발된 다목적형 대형 교반 임펠러이나, 그중에서도 세포 배양이나 효모의 배양, 맥주 발효 솥 등은 저점도 액의 통기 교반에 많이 사용하며, 특히 공기-수계의 통기성 교반에 많이 적용한다. 구조가 간단하면서도 성능 면에서 경쟁력을 갖는 HOMEBASE 임펠러에 대한 글라스 라이닝은 제작상 임펠러와 샤프트의 접합 면적을 가능한 한 작게 할 수 있도록 상하 분할이 필수적이다. 임펠러의 상하 분할은 혼합 성능에는 거의 영향을 미치지 않지만, 통기 성능을 저하하였다. 본 연구에서는 Glass Lined HOMEBASE 임펠러 형상의 최적화를 위해, 상·하부로 분할된 임펠러 사이의 장착각도차와 임펠러 사이의 간격 및 방해판의 개수가 통기 동력에 미치는 영향에 관한 연구를 수행하였다. 상·하부로 분할된 임펠러 사이의 장착각도차와 간격이 통기를 할 때의 동력 Pg와 통기가 없을 때의 동력 P0의 비인 Pg/P0를 저하시킨다는 연구 결과를 통해 Glass Lined HOMEBASE 임펠러 최적 형상과 방해판 조건을 도출하였다.
Glass lined impellers are corrosion resistant to most chemicals, including strong acids, and also have a smooth, non-stick surface, easy to clean and free from impurities in the process. Glass lined home base impeller is a multi-purpose impeller designed to stir a wide viscosity range of liquids from low viscosity fluids to high viscosity fluids, among others, cell culture, yeast culture, and beer fermentation pots, especially used for air-water system breathable stirring. The glass lining for HB impellers, which are simple in structure and competitive in performance, is essential to have upper and lower division in order to make the joint area between the impeller and shaft as small as possible. The upper and lower division of the impeller hardly affects the mixing performance, but the aeration performance. In this study, in order to optimize the shape of the Glass Lining HB impeller, a study was conducted on the effect of the angle between the upper and lower impellers, the clearance between the impellers, and the number of baffles on the aeration power. The optimal shape and baffle plate conditions for the Glass lined HB impeller were derived through the study results that the angle and the clearance between the upper and lower impellers decreased the ration of the power consumption with aeration Pg and that without aeration P0, Pg/P0.
[References]
  1. Kato Y, Hiramatsu M, Ohtani S, Yoshida M, Shiobara K, Kagaku Kogaku Ronbunshu, 41, 16, 2015
  2. Kato Y, Ohtani S, Furukawa H, Kagaku Kogaku Ronbunshu, 41, 276, 2015
  3. Matsuno M, Suzuki K, Sato A, Furukawa H, Kato Y, Kagaku Kogaku Ronbunshu, 45, 6, 2019
  4. Yang SN, Baek SW, Kim NK, Journal of Korean Institute of Chemical Engineers, 38(4), 556 (2000).
  5. Lee HS, Jung JH, Lee SY, Korean J. Biotechnol. Bioeng., 16(3), 307, 2001
  6. Cho KH, Lee CW, J. Korean Ind. Eng. Chem., 38(2), 310, 2000
  7. Lee HS, Lee KY, Choi SY, Lee SY, Korean Society for Biotech-nology and Bioengineering Jounal, 26, 357 (2011).
  8. Furukawa H, Oda E, He C, Kamei N, Kato Y, Tada Y, Kagaku Kogaku Ronbunshu, 38(4), 209, 2012
  9. Furukawa H, Kamei N, Kato Y, He CL, Suzuki T, Tada Y, Kag. Kog. Ronbunshu, 39(4), 287, 2013
  10. Furukawa H, Kato Y, Nagumo R, Tada Y, Kag. Kog. Ronbunshu, 41(2), 91, 2015
  11. Zheng ZY, Sun DD, Li J, Zhan XB, Gao MJ, Chem. Eng. Res. Des., 130, 199, 2018
  12. Kamei N, Kato Y, Tada Y, Ando J, Nagatsu Y, J. Chem. Eng. Jpn., 42(9), 664, 2009
  13. Furukawa H, Matsumoto K, Kato Y, Kamiya M, Haitsuka M, Kamei N, J. Chem. Eng. Res. Updates, 4, 1, 2017
  14. Kato Y, Tada Y, Urano K, Hattori M, Nagatsu Y, Koh ST, Lee YS, Kag. Kog. Ronbunshu, 36(1), 30, 2010
  15. Saito F, Nienow AW, Chatwin S, Moore LT, J. Chem. Eng. Jpn., 25, 281, 1992