Issue
Korean Chemical Engineering Research,
Vol.59, No.4, 521-531, 2021
CFD를 이용한 진공가압함침공정 내 유해가스 배출시스템 설계
Design of Hazardous Fume Exhaust System in Vacuum Pressure Impregnation Process Using CFD
진공가압함침공정(Vacuum Pressure Impregnation, VPI)은 발전기, 전동기 등 대형 회전기에 사용되는 고정자 권선에 에폭시 계열의 레진을 코팅시켜 물성을 강화하는 공정이다. VPI 공정 중 진공과 가압과정에서 에폭시 레진의 기화에 의해 레진 가스가 발생하고, 함침공정이 끝나고 경화를 위해 탱크 개방 시 레진 가스가 제거되지 않고 탱크 밖으로 유출된다. 유출된 레진 가스가 작업장 전체에 확산 시 화재, 폭발 및 호흡기 문제와 같은 안전 환경 문제가있으므로 공정 내 레진 가스 배출시스템이 필요하다. 따라서, 본 연구에서는 VPI 공정에서 발생한 레진 가스를 배출하는 시스템을 설계하기 위해 전산유체역학(Computational Fluid Dynamics, CFD)을 이용하여 공기 유입구·배출구의 위치에 따른 배출효율에 대한 사례연구를 진행하였다. 본 연구의 최적의 배출시스템을 활용 시 1,800초 이내 90%이상의 레진 가스를 배출할 수 있으며, 레진 가스의 폭발하한계(Low Explosive Limit, LEL)이하로 레진 가스의 분율을 낮출 수 있었다.
Vacuum Pressure Impregnation (VPI) is a process that enhances physical properties by coating some types of epoxy resins on windings of stator used in large rotators such as generators and motors. During vacuum and pressurization of the VPI process, resin gas is generated by vaporization of epoxy resin. When the tank is opened for curing after finishing impregnation, resin gas is leaked out of the tank. If the leaked resin gas spreads throughout the workplace, there are safety and environmental problems such as fire, explosion and respiratory problems. So, exhaust system for resin gas is required during the process. In this study, a case study of exhaust efficiency by location of vent was conducted using Computational Fluid Dynamics (CFD) in order to design a system for exhausting resin gas generated by the VPI process. The optimal exhaust system of this study allowed more than 90% of resin gas to be exhausted within 1,800 seconds and reduced the fraction of resin gas below the Low Explosive Limit (LEL).
[References]
  1. Kim HD, Lee YJ, Ju YH, The Transactions of The Korean Institute of Electrical Engineers 58(7), 1375 (2009).
  2. Minami, Matsutaroh, et al. “Recent Insulation System For Low Voltage Rotary Machines.” (1979).
  3. Kong TS, The Transactions of the Korean Institute of Electrical Engineers P, 59(3), 311 (2010).
  4. Duan JK, Kim CN, Yun Z, Jiang PK, J. Appl. Polym. Sci., 110(5), 3096, 2008
  5. Hannu, Timo, et al., International Archives of Allergy and Immunology, 148(1), 41 (2009).
  6. Fawcett IW, Taylor NAJ, Pepys J, Clinical & Experimental Allergy, 7(1), 1 (1977).
  7. Zhang, Zinan, et al., Polym. Adv. Technol., 30, 2136, 2019
  8. Zhang, Jianping, Johnson W, Plikas T, Int. J. Ventilation, 16(3), 200, 2017
  9. Lee KY, Kim KW, Journal of the Korea Academia-Industrial Cooperation Society, 14(5), 2086 (2013).
  10. Torano J, et al., Tunnelling and Underground Space Technology, 26(1), 201 (2011).
  11. Lee J, Cho S, Park C, Cho H, Moon I, Computer Aided Chemical Engineering (Vol. 40, pp. 559-564). Elsevier (2017).
  12. Park, Chanho, et al., Powder Technology, 344, 636, 2019
  13. Danielewicz J, Sniechowska B, Sayegh MA, Fidorow N, Jouhara H, Energy, 108, 172, 2016
  14. Krawczyk, Piotr, Beyene A, MacPhee D, International Journal of Energy Research, 37(14), 1784 (2013).
  15. ANSYS_Fluent_Theory Guide (2019).
  16. Cho HT, et al., Ind. Eng. Chem. Res., 52.22, 7252, 2013
  17. Cho HT, Powder Technology, 312, 113, 2017
  18. Bulat, Pavlovich M, Bulat PV, World Applied Sciences Journal, 27(10), 1263 (2013).
  19. Huang SH, Li QS Journal of Wind Engineering and Industrial Aerodynamics, 98(12), 843 (2010).