Issue
Korean Chemical Engineering Research,
Vol.59, No.4, 514-520, 2021
Iron Oxide(II, III)와 Valine을 이용한 키토산 나노입자의 약물전달 연구
Drug Delivery Study on Chitosan Nanoparticles Using Iron Oxide (II, III) and Valine
나노입자에 기초한 약물 전달 시스템(DDS, Drug Delivery System)은 약물 방출의 매개체로서 약물의 방출량을 조절하고 적합한 장소에 전달하여 효능을 향상시키기 위해 사용되어왔다. 독성이 없고 생 분해성인 Chitosan은 좋은 생체 적합성을 가지고, 뛰어난 흡착력을 가져 약물전달체로 제조할 수 있다. 기본 아미노산 중 하나인 Valine은 근육의 성장과 조직의 회복을 돕는 물질이며 다른 아미노산과 함께 혈당 수치를 낮추고 성장호르몬 생산을 증가시키는 필수아미노산이다. 본 연구에서는 Valine을 약물 흡수가 가능한 자성 Chitosan에 흡착시켜 TPP (tripolyphosphate)와의 crosslinking을 통해 약물전달체를 제조한 후, 흡수 및 방출 경향성에 대해 알아보았다. 안정성이 비교적 높은 Fe3O4를 사용하여 약물전달체가 자성을 띠게 만들어 표적 부위로 약물을 전달할 수 있도록 하였다. 최적의 조건에서 제조한 약물전달체를 아미노산의 정색반응인 Ninhydrin test를 통해 흡수 및 방출 경향성을 UV-Vis로 분석하여 확인하고 입자의 크기를 측정함으로써 약물전달체로 적합한 것을 확인하였다.
A drug delivery system (DDS) based on nanoparticles has been used as a mediator to improve the efficacy of a drug by controlling the amount of drug released and delivering it to a target place. Chitosan, which is non-toxic and biodegradable, has good biocompatibility and excellent adsorption, so it can be used as a drug delivery vehicle. Valine, the essential amino acids, helps muscle growth and tissue recovery, and along with other amino acids. It lowers blood sugar levels and increases growth hormone production. In this study, Valine was adsorbed on magnetic chitosan which is capable of drug absorption, and Fe3O4-Valine CNPs was prepared through cross-linking with TPP (Tripolyphosphate). And then absorption and release trends of valine were investigated with the Fe3O4-Valine CNPs. Fe3O4, which has relatively high stability, is used to make the drug carrier magnetic so that the drug can be delivered to a target place. At optimal conditions, the absorption and release tendency of Fe3O4-Valine CNP was confirmed by analyzing by UV-Vis through the Ninhydrin test which is the color reaction of amino acids and by measuring the size of the particles, it was confirmed that it is suitable as a drug carrier.
[References]
  1. Kingsley JD, et al, Journal of Neuroimmune Pharmacology, 1, 340 (2006).
  2. Journal of Advanced Pharmacy Education & Research 1(4): Journal of Advanced Pharmacy Education & Research, 1, 201 (2011).
  3. Singh R, Lillard JW, Exp Mol Pathol, 86, 215, 2009
  4. Farokhzad OC, Langer R, ACS Nano, 3, 16, 2009
  5. Hirano S, Seino H, Akiyama Y, Nonaka I, Progress in Biomedical Polymers, 283 (1990).
  6. hmed TA, Aljaeid BM, Drug Des Devel Ther, 10, 483, 2016
  7. Prabaharan M, J. Biomater Appl., 23, 5, 2008
  8. Li GY, Jiang YR, J. Alloy. Compd., 466, 451, 2008
  9. Arum Y, Oh YO, Kang HW, Ahn SH, Oh JH, Fisheries and Aquatic Sciences, 18, 89 (2015).
  10. Luangtana-anan M, Nunthanid J, Limmatvapirat S, Journal of Pharmaceutical Investigation, 49, 37 (2019).
  11. Meguid MM, Matthews DE, Meredith CN, Young VR, The American Journal of Clinical Nutrition, 43, 781 (1986).
  12. Galhoum AA, Mahfouz MG, Atia AA, Abdel-Rehem ST, Gomaa NA, Vincent T, Guibal E, Ind. Eng. Chem. Res., 54(49), 12374, 2015
  13. Kalant H, Anal. Chem, 265 (1956).
  14. Moore S, J. Biol. Chem., 243, 6281, 1968
  15. Sun SW, Lin YC, Weng YM, Chen MJ, J. Food Compos. Anal., 19, 112, 2006
  16. Nasti A, Zaki NM, Leonardis PD, Ungphaiboon S, Sansongsak P, Rimoli MG, Tirelli N, Pharmaceutical Research, 26, 1918, 2009
  17. Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR, Scientific Reports, 8, 4695, 2018
  18. Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS, ternational Journal of Pharmaceutics, 249, 165 (2002).
  19. Rampino A, Borgogna M, Blasi P, Bellich B, Cesaro A, Pharmaceutical Nanotechnology, 455, 219(2013).
  20. Lim JW, Kang IJ, Bull. Korean Chem. Soc., 36, 672, 2015
  21. Lim JW, Kang JJ, Bull. Korean Chem. Soc., 35, 25, 2014