Issue
Korean Chemical Engineering Research,
Vol.59, No.1, 112-117, 2021
다이타이로신 공유결합으로 자기조립된 펩타이드 나노입자의 합성
Synthesis of Self-Assembled Peptide Nanoparticles Based on Dityrosine Covalent Bonds
본 연구에서는 생물학적 공유결합인 다이타이로신 결합을 모방하여 비가역적 공유결합을 기반으로 한 펩타이드의 자기조립 방법을 연구하였다. 고밀도의 다이타이로신 결합을 달성하기 위해 Tyr-Tyr-Leu-Tyr-Tyr (YYLYY) 의 서열을 갖는 펩타이드 단량체를 선택하였다. 다이타이로신 결합으로 자기조립 된 펩타이드 나노입자는 가시광선 하에서 Ru(BPY)3Cl2 촉매를 사용하여 단일공정 광가교를 통해 합성되었다. 펩타이드 나노 입자의 크기에 대한 각 성분의 농도 효과는 동적 광산란, UV-Vis 분광법 및 투과 전자 현미경을 사용하여 확인하였다. 이를 통해 130 nm~350 nm범위의 펩타이드 나노입자의 크기별 최적의 합성 조건을 제시하였다.
In this study, a method of self-assembly of peptides based on irreversible covalent bonds was studied by mimicking a biological covalent bond, dityrosine bond. A tyrosine-rich short peptide monomer having the sequence of Tyr-Tyr-Leu-Tyr-Tyr (YYLYY) was selected to achieve a high-density of dityrosine bond. The peptide nanoparticles covalently self-assembled with dityrosine bonds were synthesized by one-step photo-crosslinking of a peptide using a ruthenium catalyst under visible light. The effect of the concentration of each component for the size of the peptide nanoparticle was studied using dynamic light scattering, UV-Vis spectroscopy, and transmission electron microscopy. As a result, the synthesis conditions for size of the peptide nanoparticles ranging from 130 nm to 350 nm were optimized.
[References]
  1. Lim Y, Moon KS, Lee M, Chem. Soc. Rev., 38(4), 925, 2009
  2. Santisa ED, Ryadnov MG, Chem. Soc. Rev., 44, 8288, 2015
  3. Hu X, Liao M, Gong H, Zhang L, Cox H, Waigh TA, Lu JR, Curr. Opin. Colloid Interface Sci., 45, 1, 2020
  4. Mann S, Nat. Mater., 8(10), 781, 2009
  5. Baek K, Hwang I, Roy I, Shetty D, Kim K, Accounts Chem. Res., 48, 2221, 2015
  6. Luo TZ, Kiick KL, J. Am. Chem. Soc., 137(49), 15362, 2015
  7. Okesola BO, Mata A, Chem. Soc. Rev., 47(10), 3721, 2018
  8. Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, et al., Nature, 437(7061), 999, 2005
  9. Partlow BP, Applegate MB, Omenetto FG, Kaplan DL, ACS Biomater. Sci. Eng., 2(12), 2108, 2016
  10. Burrows M, Shaw SR, Sutton GP, BMC Biol., 6(1), 41, 2008
  11. Cui H, Webber MJ, Stupp SI, Pept. Sci., 94(1), 1, 2010
  12. Fancy DA, Kodadek T, Proc. Natl. Acad. Sci. U. S. A., 96(11), 6020, 1999
  13. Ding Y, Li Y, Qin M, Cao Y, Wang W, Langmuir, 29(43), 13299, 2013
  14. Zhang D, Peng H, Sun B, Lyu S, Fiber. Polym., 18(10), 1831, 2017
  15. Min KL, Kim DH, Lee HJK, Lin L, Kim DP, Angew. Chem.-Int. Edit., 130(20), 5732, 2018
  16. Min KI, Yun G, Jang Y, Kim KR, Ko YH, Jang HS, Lee YS, Kim K, Kim DP, Angew. Chem.-Int. Edit., 55(24), 6925, 2016
  17. Malencik DA, Sprouse JF, Swanson CA, Anderson SR, Anal. Biochem., 242(2), 202, 1996
  18. Lehrer SS, Fasman GD, Biochemistry, 6(3), 757, 1967
  19. Correia M, Neves-Petersen MT, Jeppesen PB, Gregersen S, Petersen SB, PLoS One, 7(12), e50733, 2012