Issue
Korean Chemical Engineering Research,
Vol.57, No.3, 432-437, 2019
유연전극을 이용한 대기압 부유전극 유전체 장벽 방전 플라즈마
Atmospheric Pressure Floating Electrode-Dielectric Barrier Discharges (FE-DBDs) Having Flexible Electrodes
유연전극 기반의 대기압 부유전극 유전체 장벽 방전 (floating electrode-dielectric barrier discharge, FE-DBD) 시스템을 개발하여 플라즈마 특성을 분석하였다. 유연한 파워전극(powered electrode)을 구성하는 유연유전체로 polytetrafluoroethylene (PTFE), polydiemethylsiloxane (PDMS), polyethylene terephthalate (PET)를 사용하여 플라즈마를 발생하였을 때 플라즈마의 광학적 세기와 전자온도는 파워전극에 인가하는 전압이 증가할수록 증가하였고, 전압이 일정할 때는 PTFE < PDMS < PET 순으로 증가하였다. 이는 유전체의 종류와 전압에 따른 축전용량의 변화로 설명 할 수 있었고, 유연전극 기반의 대기압 FE-DBD 플라즈마의 특성은 유연한 파워전극을 구성하는 유전체와 파워전극에 인가되는 전압을 변화함으로써 조절될 수 있음을 의미한다. 유연전극 대기압 FE-DBD 시스템은 피부 곡면을 따라 플라즈마가 발생될 수 있으므로 플라즈마 메디신(plasma medicine)에 유용할 것으로 기대한다.
An atmospheric pressure floating electrode-dielectric barrier discharge (FE-DBD) system having flexible electrodes was developed and its plasma characteristics was investigated. Polytetrafluoroethylene (PTFE), polydiemethylsiloxane (PDMS), and polyethylene terephthalate (PET) were used as flexible dielectrics for flexible powered-electrodes. The optical intensity and electron temperature of the atmospheric pressure FE-DBD plasma increased with the voltage applied to the powered electrode, and increased in the order of PTFE < PDMS < PET at a fixed voltage. This behavior was explained in terms of the change in the capacitance of the flexible dielectrics with the dielectric type and voltage, implying that the plasma characteristics of an atmospheric pressure FE-DBD having flexible electrodes can be controlled by modulating the flexible dielectrics for the flexible powered-electrode and the voltage applied to the powered electrode. Because an atmospheric pressure FE-DBD system can generate a plasma along the curvature of skins, it is expected to have useful applications in plasma medicine.
[References]
  1. Schaepkens M, Oehrlein GS, Hedlund C, Jonsson LB, Blom HO, J. Vac. Sci. Technol. A, 16(6), 3281, 1998
  2. Kim JH, Cho SW, Park CJ, Chae H, Kim CK, Thin Solid Films, 637, 43, 2017
  3. Cho SW, Kim CK, Lee JK, Moon SH, Chae HJ, Vac. Sci. Technol. A, 30, 051301-1-051301-6(2012).
  4. Lee TH, Lim BR, Yong KJ, Kwon WS, Park MW, Korean J. Chem. Eng., 34(9), 2502, 2017
  5. Ji SH, Jang WS, Son JW, Kim DH, Korean J. Chem. Eng., 35(12), 2474, 2018
  6. Choi JH, Kim SJ, Kim HT, Cho SM, Korean J. Chem. Eng., 35(6), 1348, 2018
  7. Fridman G, Friedman G, Gutsol A. Shekhter AB, Vasilets VN, Fridman A, Plasma Process. Polym., 5, 503, 2008
  8. Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann KD, J. Phys. D: Appl. Phys., 44, 013002-1-013002-18(2011).
  9. Graves DB, J. Phys. D: Appl. Phys., 45, 206330-1-263001-42(2012).
  10. Xiong Z, Roe J, Grammer TC, Graves DB, Plasma Process. Polym., 13, 588, 2016
  11. Weltmann KD,von Woedtke T, Plasma Phys. Control. Fusion, 59, 014031-1-014031-11(2017).
  12. Kolb JF, Mohamed AA, Price RO, Swanson RJ, Bowman A, Chiavarini RL, Stacey M, Schoenbach KH, Appl. Phys. Lett., 92, 241501-1-241501-3(2008).
  13. Lu XP, Jiang ZH, Xiong Q, Tang ZY, Pan Y, Appl. Phys. Lett., 92, 151504-1-151504-3(2008).
  14. Lee HW, Nam SH, Mohamed AH, Kim GC, Lee JK, Plasma Process. Polym., 7, 274, 2010
  15. Kogelschatz U, Plasma Chem. Plasma Process., 23(1), 1, 2003
  16. Pavlovich MJ, Chen Z, Sakiyama Y, Clark DS, Graves DB, Plasma Process. Polym., 10, 69, 2013
  17. Pei X, Liu J, Xian Y, Lu X, J. Phys. D: Appl. Phys., 47, 145204-1145204-6(2014).
  18. Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G, Plasma Chem. Plasma Process., 26(4), 425, 2006
  19. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G, Plasma Chem. Plasma Process., 27(2), 163, 2007
  20. Babaeva NY, Kushner MJ, J. Phys. D: Appl. Phys., 43, 185206-1-185206-12(2010).
  21. Walsh JL, Liu DX, Iza F, Rong MZ, Kong MG, J. Phys. D: Appl. Phys., 43, 032001-1-032001-7(2010).
  22. Baroch P, Saito N, Takai O, J. Phys. D: Appl. Phys., 41, 085207-1-085207-6(2008).
  23. Ozkan A, Dufour T, Bogaerts A, Reniers F, Plasma Sources Sci. Technol. 25, 045016-1-045016-11(2016).
  24. Valdivia-Barrientos R, Pacheco-Sotelo J, Pacheco-Pacheco M, Benitez-Read JS, Lopez-Callejas R, Plasma Sources Sci. Technol., 15, 237, 2006
  25. Bose D, Rauf S, Hash DB, Govindan TR, Meyyappan M, J. Vac. Sci. Technol. A, 22(6), 2290, 2004
  26. Itagaki N, Iwata S, Muta K, Yonesu A, Kawakami S, Ishii N, Kawai Y, Thin Solid Films, 435(1-2), 259, 2003
  27. Ohno N, Razzak MA, Ukai H, Takamura S, Uesugi Y, Plasma Fusion Research, 1, 028-1-028-9(2006).
  28. Xiao D, Cheng C, Shen J, Lan Y, Xe H, Shu X, Meng Y, Li J, Chu PK, J. Appl. Phys., 115, 033303-1-033303-10(2014).
  29. http://physics.nist.gov/PhysRefData/ASD/index.html.
  30. Camacho JJ, Poyato JML, Diaz L, Santos M, J. Phys. B: At. Mol. Phys., 40, 4573, 2007
  31. Kim JH, Choi YH, Hwang YS, Physics of Plasmas, 13, 093501-1-093501-7(2006).
  32. Hong Y, Niu J, Pan J, Bi Z, Ni W, Liu D, Li J, Wu Y, Vacuum, 130, 130, 2016
  33. Mangolini L, Anderson C, Heberlein J, Kortshagen U, J. Phys. D-Appl. Phys., 37, 1021, 2004