Issue
Korean Chemical Engineering Research,
Vol.55, No.2, 275-278, 2017
Modeling on Hydrogen Effects for Surface Segregation of Ge Atoms during Chemical Vapor Deposition of Si on Si/Ge Substrates
Heterogeneous semiconductor composites have been widely used to establish high-performance microelectronic or optoelectronic devices. During a deposition of silicon atoms on silicon/germanium compound surfaces, germanium (Ge) atoms are segregated from the substrate to the surface and are mixed in incoming a silicon layer. To suppress Ge segregation to obtain the interface sharpness between silicon layers and silicon/germanium composite layers, approaches have used silicon hydride gas species. The hydrogen atoms can play a role of inhibitors of silicon/germanium exchange. However, there are few kinetic models to explain the hydrogen effects. We propose using segregation probability which is affected by hydrogen atoms covering substrate surfaces. We derived the model to predict the segregation probability as well as the profile of Ge fraction through layers by using chemical reactions during silicon deposition.
[References]
  1. Moutanabbir O, Gosele U, Annu. Rev. Mater. Res., 40, 469, 2010
  2. Heyns M, Tsai W, MRS Bull., 34(7), 485, 2009
  3. Pearsall TP, Bevk J, Feldman LC, Bonar JM, Mannerts JP, Phys. Rev. Lett., 58(7), 729, 1987
  4. Li JY, Huang CT, Sturm JC, Appl. Phys. Lett., 101(14), 142112, 2012
  5. Johll H, Samuel M, Koo RY, Kang HC, Yeo YC, Tok ES, J. Appl. Phys., 117(20), 205302, 2015
  6. Harris JJ, Ashenford DE, Foxon CT, Dobson PJ, Jpyce BA, Appl. Phys. A-Mater. Sci. Process., 33(2), 87, 1984
  7. Fukatsu S, Fujita K, Yaguchi H, Shiraki Y, Ito R, Appl. Phys. Lett., 59(17), 2103, 1991
  8. Godbey D, Ancona M, J. Vac. Sci. Technol. B, 11(3), 1120, 1993
  9. Ohtani N, Mokler S, Xie MH, Zhang J, Joyce BA, Jpn. J. Appl. Phys., 33, 2311, 1994
  10. Ohtani N, Mokler S, Xie MH, Jhang J, Joyce BA, Surf. Sci., 284(3), 305, 1993
  11. Ohtani N, Mokler S, Joyce BA, Surf. Sci., 295(3), 325, 1993
  12. Li Y, Hembree G, Venables JA, Appl. Phys. Lett., 67(2), 276, 1995
  13. Zaima S, Kato K, Kitani T, Matsuyama T, Ikeda H, Yasuda Y, J. Cryst. Growth, 150, 944, 1995
  14. Gates SM, Greenlief CM, Beach DB, Holbert PA, J. Chem. Phys., 92(5), 3144, 1990
  15. Gates SM, Kulkarni SK, Appl. Phys. Lett., 58(25), 2963, 1991
  16. Park SS, Park JH, Kim SJ, Jung SC, Korean Chem. Eng. Res., 46(6), 1063, 2008
  17. Hong JH, Kim SH, Hahn YB, Korean Chem. Eng. Res., 42(4), 447, 2004
  18. Hu XF, Xu Z, Dim D, Downer MC, Parkinson PS, Gong B, Hess G, Ekerdt JG, Appl. Phys. Lett., 71(10), 1376, 1997