Issue
Korean Chemical Engineering Research,
Vol.55, No.2, 270-274, 2017
개미산 분해 반응에서 수소 생산성 증대를 위한 Pd/Pd3Fe 합금 촉매: 범밀도 함수 이론 연구
Pd/Pd3Fe Alloy Catalyst for Enhancing Hydrogen Production Rate from Formic Acid Decomposition: Density Functional Theory Study
본 연구에서는 양자 역학 계산 이론 중 하나인 Density Functional Theory (DFT)를 사용하여 Pd/Pd3Fe 촉매 표면에서 개미산(HCOOH) 분해 반응으로부터 수소를 생산하는 반응 메커니즘을 분석하였다. 기존 연구에 따르면, 단일 원자 촉매중에서 개미산 분해 반응에 가장 높은 수소 생산성을 기록하는 원자는 Pd 촉매이지만, 부 반응으로 생산되는 CO가 Pd에 독성을 띄우기 때문에 Pd 촉매의 성능을 저하시킨다. 이러한 단점을 극복하고자, Pd를 기반으로 Pd와 Fe를 3:1로 합금하여 Pd3Fe가 코어(core) 형태로 존재하고 Pd가 표면에 위치한 core-shell Pd/Pd3Fe 촉매를 설계하여 개미산 분해 반응에 의한 수소 생산 속도를 계산하였다. 순수 Pd촉매 보다 Pd/Pd3Fe 촉매의 수소 생산 반응의 활성 에너지가 감소하였다. 그 이유는 Pd와 Fe가 합금화 되면서 Pd3Fe의 격자 상수가 2.76 A로 줄어 들어 HCOO의 흡착에너지를 0.03 eV 감소시켰고, Fe에서 표면 Pd로 전자가 이동하면서 표면 전자 구조가 변화하여 HCOO의 흡착에너지를 0.29 eV 낮추었기 때문이다. 본 연구에서 제안하는 결과를 바탕으로 추후 개미산으로부터 수소 생산이 더 용이한 새로운 촉매 설계 메커니즘을 제안하고자 한다.
Formic acid has been known as one of key sources of hydrogen. Among various monometallic catalysts, hydrogen can be efficiently produced on Pd catalyst. However, the catalytic activity of Pd is gradually reduced by the blocking of active sites by CO, which is formed from the unwanted indirect oxidation of formic acid. One of promising solutions to overcome such issue is the design of alloy catalyst by adding other metal into Pd since alloying effect (such as ligand and strain effect) can increase the chance to mitigate CO poisoning issue. In this study, we have investigated formic acid deposition on the bimetallic Pd/Pd3Fe core-shell nanocatalyst using DFT (density functional theory) calculation. In comparison to Pd catalyst, the activation energy of formic acid dehydrogenation is greatly reduced on Pd/Pd3Fe catalyst. In order to understand the importance of alloying effects in catalysis, we decoupled the strain effect from ligand effect. We found that both strain effect and ligand effect reduced the binding energy of HCOO by 0.03 eV and 0.29 eV, respectively, compared to the pure Pd case. Our DFT analysis of electronic structure suggested that such decrease of HCOO binding energy is related to the dramatic reduction of density of state near the fermi level.
[References]
  1. Kulesza PJ, Pieta IS, Rutkowska IA, Wadas A, Marks D, Klak K, Stobinski L, Cox JA, Electrochim. Acta, 110, 474, 2013
  2. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE, Nat. Nanotechnol., 6(5), 302, 2011
  3. Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y, Chem. Soc. Rev., 43(10), 3480, 2014
  4. Bulushev DA, Beloshapkin S, Ross JRH, Catal. Today, 154(1-2), 7, 2010
  5. Cho J, Lee S, Han J, Yoon SP, Nam SW, Choi SH, Lee KY, Ham HC, J. Phys. Chem. C, 118, 22553, 2014
  6. Kresse, G., Vasp the Guide. 2001.
  7. Blochl PE, Phys. Rev. B, 50, 17953, 1994
  8. Blochl PE, Jepsen O, Andersen OK, Phys. Rev. B, 49, 16223, 1994
  9. Henkelman G, Uberuaga BP, Jonsson H, J. Chem. Phys., 22, 113, 2000
  10. Hu CQ, Ting SW, Chan KY, Huang W, Int. J. Hydrog. Energy, 37(21), 15956, 2012
  11. Singh S, Li S, Carrasquillo-Flores R, Alba-Rubio AC, Dumesic JA, Mavrikakis M, AIChE J., 60(4), 1303, 2014
  12. Yue CMY, Lim KH, Catal. Lett., 128, 221, 2008
  13. Zhang R, Liu H, Wang B, Ling L, J. Phys. Chem. C, 116, 22266, 2012
  14. Mavrikakis MH, Hammer B, Nørskov JK, Phys. Rev. Lett., 81, 2819, 1998
  15. Kitchin JR, Nørskov JK, Barteau MA, Chen JG, Phys. Rev. Lett., 93, 156801, 2004
  16. Henkelman G, Arnaldsson A, Jonsson H, Comput. Mater. Sci., 36(3), 354, 2006
  17. Kim KH, Yu JK, Lee HS, Choi JH, Noh SY, Yoon SK, Lee CS, Hwang TS, Rhee YW, Korean J. Chem. Eng., 24(3), 518, 2007
  18. Yu JK, Lee HS, Kim KH, Kim YC, Han JH, Oh IH, Rhee YW, Korean Chem. Eng. Res., 44(3), 314, 2006
  19. Lee SH, Cho J, Jang JH, Han J, Yoon SP, Nam SW, Lim TH, Ham HC, ACS Catal., 6(1), 134, 2016
  20. Cho J, Lee S, Han J, Yoon SP, Nam SW, Choi SH, Hong SA, Lee KY, Ham HC, J. Nanosci. Nanotechnol., 15(10), 8233, 2015
  21. Lee JH, Cho J, Jeon M, Ridwan M, Park HS, Choi SH, Nam SW, Han J, Lim TH, Ham HC, Yoon CW, J. Mater. Chem. A, 4, 14141, 2016