Issue
Korean Chemical Engineering Research,
Vol.55, No.2, 264-269, 2017
무전해 구리도금 된 흑연 섬유의 발열 특성
Thermal Heating Characteristics of Electroless Cu-Plated Graphite Fibers
피치계 흑연섬유의 발열특성을 향상시키기 위하여 흑연섬유에 무전해법을 이용하여 구리 도금하였다. 구리 도금된 흑연섬유는 공기 분위기에서 열중량분석법을 실시하여 도금 시간에 따라 흑연섬유 표면에 구리가 도입된 양을 계산하였다. 또한, 전압에 따른 발열 온도는 섬유 가닥을 이용하여 열화상카메라로 관찰하였다. 무전해 도금의 시간이 증가함에 따라 도입된 구리의 양은 증가하였다. 20분 동안 무전해 도금한 섬유의 전기 전도도는 1594.3 S/cm이며, 발열 온도는 최대 57.2 °C로 가장 크게 나타났다. 이러한 결과는 도금시간이 증가함에 따라 전기 전도성이 우수한 구리가 흑연섬유 표면에 성장하고, 이에 따라 발열특성이 향상된 것으로 판단된다.
To improve heating characteristics of graphite fibers, graphite fibers were copper-plated by electroless plating. The Cu-plated graphite fibers were investigated by thermos-gravimetric analysis in air to calculate quantities of copper on surface of graphite fiber according to plating time. Also, the surface temperature with applied voltage was observed by thermos-graphic camera using a strand of graphite fiber. According to the increment of plating time, the higher quantities of plated copper on graphite fiber were obtained. The electric conductivity of plated graphite fiber for 20 minutes was resulted in 1594.3 S/cm, and surface temperature of this sample showed the maximum temperature 57.2 °C. These result could be attributed that copper having great electric conductivity are growing on graphite fiber and followed improving heating characteristics.
[References]
  1. Fosbury A, Wang S, Pin YF, Chung DDL, Compos. Pt. A-Appl. Sci. Manuf., 34, 933, 2003
  2. Jung MJ, Park MS, Lee S, Lee YS, Appl. Chem. Eng., 27(3), 319, 2016
  3. Carrillo-Escalante HJ, Alvarez-Castillo A, Valadez-Gonzalez A, Herrera-Franco PJ, Carbon Lett., 19, 47, 2016
  4. Chu K, Yun DJ, Kim D, Park H, Park SH, Org. Electron., 15, 2734, 2014
  5. Kim M, Kong K, Kim N, Park HW, Park O, Park YB, Jung M, Lee SH, Kim SG, Compo. Res., 27, 72, 2013
  6. Jee MH, Lee JH, Lee IS, Baik DG, Text. Sci. Eng., 50, 108, 2013
  7. Pyo D, Eom S, Lee YS, Ryu S, Korean Chem. Eng. Res., 49(2), 218, 2011
  8. Kim BJ, Choi WK, Song HS, Park JK, Lee JY, Park SJ, Carbon Lett., 9, 105, 2008
  9. Kim BJ, Choi WK, Um MK, Park SJ, Surf. Coat. Technol., 205, 3416, 2011
  10. Xu C, Liu G, Chen H, Zhou R, Liu Y, J. Mater. Sci. -Mater. Electron., 25, 2611, 2014
  11. Rathmell AR, Wiley BJ, Adv. Mater., 23(41), 4798, 2011
  12. Kim MJ, Kim JJ, Korean Chem. Eng. Res., 52(1), 26, 2014
  13. Kim HC, Kim JJ, Korean Chem. Eng. Res., 54(6), 723, 2016
  14. Yousef A, El-Halwany MM, Barakat NAM, Al-Maghrabi MN, Kim HY, J. Ind. Eng. Chem., 26, 251, 2015
  15. Kim DY, Yun KJ, Lee YS, Appl. Chem. Eng., 25(3), 268, 2014
  16. Choi JR, Rhee KY, Park SJ, J. Ind. Eng. Chem., 31, 47, 2015
  17. Yoon HS, Oh JH, Lee HK, Jeon JK, Ryu SK, Korean Chem. Eng. Res., 46(5), 863, 2008
  18. Oh KH, Text. Sci. Eng., 38, 309, 2001
  19. Kim YS, Shin J, Kim HI, Cho JH, Seo HK, Kim GS, Shin HS, Korean Chem. Eng. Res., 43(4), 495, 2005
  20. Yamamoto Y, Akiyama H, Ooka K, Yamamura K, Oshikane Y, Zettsu N, Curr. Appl. Phys., 12, S63, 2012
  21. Chong SP, Ee YC, Chen Z, Law SB, Surf. Coat. Technol., 198, 287, 2005
  22. Ng HT, Li SFY, Chan L, Loh FC, Tan KL, J. Electrochem. Soc., 145(9), 3301, 1998
  23. Xueping G, Yating W, Lei L, Bin S, Wenbin H, Surf. Coat. Technol., 201, 7018, 2007
  24. Li J, Hayden H, Kohl PA, Electrochim. Acta, 49(11), 1789, 2004
  25. Touir R, Larhzil H, Ebntouhami M, Cherkaoui M, Chassaing E, J. Appl. Electrochem., 36(1), 69, 2006
  26. Li J, Kohl PA, J. Electrochem. Soc., 149(12), C631, 2002
  27. Tian F, Li HP, Zhao NQ, He CN, Mater. Chem. Phys., 115(2-3), 493, 2009
  28. Lu W, Donepudi VS, Prakash J, Liu J, Amine K, Electrochim. Acta, 47(10), 1601, 2002
  29. Chien AT, Cho S, Joshi Y, Kumar S, Polymer, 585, 6895, 2014
  30. Oya N, Johnson DJ, Carbon, 39, 635, 2001
  31. Choi KE, Park CH, Seo MK, Appl. Chem. Eng., 27(2), 210, 2016