Issue
Korean Chemical Engineering Research,
Vol.55, No.2, 242-246, 2017
하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구
Study on LiFePO4 Composite Cathode Materials to Enhance Thermal Stability of Hybrid Capacitor
고온에서 Mn 이온 용출에 의한 성능저하를 보이는 스피넬 결정구조의 LiMn2O4 양극 하이브리드 커패시터의 대안으로 열안정성이 높은 올리빈 결정구조의 LiFePO4 기반 복합양극 소재의 적용가능성을 연구하였다. LiFePO4/활성탄셀을 이용한 1.0~2.3 V의 충·방전을 통한 수명평가에서 상온(25 °C) 및 고온(60 °C) 조건 모두에서 충·방전 사이클이 진행됨에 따라 음극(활성탄)의 저전압화에 따른 열화로 인한 용량저하 현상이 나타났다. 이의 해결을 위해 50:50 중량비율로 LiFePO4/LiMn2O4, LiFePO4/Activated carbon 및 LiFePO4/LiNi1/3Co1/3Mn1/3O2 복합양극을 제조하여 모노셀 충·방전 실험을 수행한 결과, 층상구조의 LiNi1/3Co1/3Mn1/3O2를 사용한 전극이 안정적인 전압거동을 보였다. 또한, 2.3 V 및 80 °C에서 1,000시간 부하를 통한 고온 안정성 실험에서도 LiFePO4/LiNi1/3Co1/3Mn1/3O2 복합양극이 상용 LiMn2O4 양극에 비해 약 2배 가량 높은 방전용량 유지율을 보였다.
The application of composite cathode materials including LiFePO4 (lithium iron phosphate) of olivine crystal structure, which has high thermal stability, were investigated as alternatives for hybrid battery-capacitors with a LiMn2O4 (spinel crystal structure) cathode, which exhibits decreased performance at high temperatures due to Mn-dissolution. However, these composite cathode materials have been shown to have a reduction in capacity by conducting life cycle experiments in which a LiFePO4/activated carbon cell was charged and discharged between 1.0 V and 2.3 V at two temperatures, 25 °C and 60 °C, which caused a degradation of the anode due to the lowered voltage in the anode. To avoid the degradation of the anode, composite cathodes of LiFePO4/LiMn2O4 (50:50 wt%), LiFePO4/activated carbon (50:50 wt%) and LiFePO4/LiNi1/3Co1/3Mn1/3O2 (50:50 wt%) were prepared and the life cycle experiments were conducted on these cells. The composite cathode including LiNi1/3Co1/3Mn1/3O2 of layered crystal structure showed stable voltage behavior. The discharge capacity retention ratio of LiFePO4/LiNi1/3Co1/3Mn1/3O2 was about twice as high as that of a LiFePO4/LiMn2O4 cell at thermal stability experiment for a duration of 1,000 hours charged at 2.3 V and a temperature of 80 °C.
[References]
  1. Yu G, Xie X, Pan L, Bao Z, Cui Y, Nano Energy, 2(2), 213, 2013
  2. Lee SW, Park DK, Lee JK, Ju JB, Sohn TW, Korean J. Chem. Eng., 18(3), 371, 2001
  3. Sharma P, Bhatti TS, Energy Conv. Manag., 51(12), 2901, 2010
  4. Ko HS, Choi JE, Lee JD, Korean Chem. Eng. Res., 52(1), 52, 2014
  5. Choi JE, Bae GY, Yang JM, Lee JD, Korean Chem. Eng. Res., 51(3), 308, 2013
  6. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y, Nano Lett., 11(7), 2949, 2011
  7. Wang YG, Lou JY, Wu W, Wang CX, Xia YY, J. Electrochem. Soc., 154(3), A228, 2007
  8. Karthikeyan K, Aravindan V, Lee SB, Jang IC, Lim HH, Park GJ, Yoshio M, Lee YS, J. Alloy. Compd., 504(1), 224, 2010
  9. Cericola D, Novak P, Wokaun A, Kotz R, J. Power Sources, 196(23), 10305, 2011
  10. Jiang JB, Tan GR, Peng SJ, Qian D, Liu JL, Luo DM, Liu YC, Electrochim. Acta, 107, 59, 2013
  11. Aravindan V, Sundaramurthy J, Kumar PS, Lee YS, Ramakrishna S, Madhavi S, Chem. Commun., 51, 2225, 2015
  12. Kim S, Kim S, Kim J, Kim U, Hwang H, Cho W, Trans. of the Korean Hydrogen and New Energy Society, 22(5), 728, 2011
  13. Wang J, Yao X, Zhou X, Liu Z, J. Mater. Chem., 21, 2544, 2011