Issue
Korean Chemical Engineering Research,
Vol.55, No.2, 220-224, 2017
초임계 유체를 이용한 폐페놀수지로부터 카본입자 재활용 연구
Recycling of Carbon Particle from Phenol Resin Waste using Supercritical Fluid
본 논문에서는 전기절연판이나 접착제로 널리 사용되는 페놀수지를 초임계 유체를 이용하여 카본입자로 재활용 하는 방법을 연구 하였다. 폐페놀수지는 불융/불용 특성으로 대부분 매립하거나 소각처리하고 있으며, 환경오염 방지차원에서 페놀수지의 새로운 재활용 기술 개발이 매우 필요한 실정이다. 폐페놀수지를 재활용하기 위해 다양한 아/초임계 용매(에탄올, 아세톤, 물, 메탄올)를 선정하여 처리하였다. 그 결과 기존의 카본입자의 제조 방법들 보다 훨씬 낮은 온도 조건(350~380 °C)에서 카본입자를 제조할 수 있었다. 본 연구에서는 재활용된 카본입자의 FT-IR, XRD, TGA, SEM, EDS 분석을 통하여 반응용매에 따른 카본입자의 특성을 고찰하였으며, 모든 용매에 대해 동일한 화학구조 및 비정질 구조를 가지는 카본입자를 제조 할 수 있었다.
In this study, we investigated a new recycling method of phenol resin, which is widely used to make electric insulation boards and adhesives, into carbon particles by using supercritical fluids. Because phenol resin is insoluble and infusible, most of the phenol resin wastes are buried in the ground or incinerated, which leads to environmental pollution. Therefore, development of a new method to recycle phenol resin waste is an urgent issue. In this study, phenol resin waste was treated with four sub/supercritical solvents: ethanol, acetone, water, and methanol. For all the sub/supercritical solvents, the phenol resin wastes were broken down into carbon nano particles at much lower temperatures than that required in the existing carbon particle manufacturing processes. We investigated the difference of morphologies and physical properties of recycled carbon particles according to the use of various solvents. As a result, carbon nano particles with the same amorphous structure were obtained from phenol resin waste with the usage of various sub/supercritical solvents at much lower temperature.
[References]
  1. Bakelite LH, Ind. Eng. Chem., 5(6), 506, 1913
  2. Gould DF, Phenolic Resins., New York (1959).
  3. Voss D, Chem. Eng. Prog., 5(10), 62, 1989
  4. Sato O, Saito N, Nippon Enerugi Gakkaishi, 76(9), 861, 1997
  5. Campanelli JR, Kamal MR, Cooper DG, J. Appl. Polym. Sci., 54(11), 1731, 1994
  6. Yoshioka T, Sato T, Okuwaki A, J. Appl. Polym. Sci., 52(9), 1353, 1994
  7. Oku A, Hu LC, Yamada E, J. Appl. Polym. Sci., 63(5), 595, 1997
  8. Lee HS, Jeong JH, Hong SM, Koo CM, Cho HK, Lee YW, Korean Chem. Eng. Res., 50(1), 88, 2012
  9. Song JH, Ahn HC, Kim GS, Kim SB, Jung JS, Gong SH, Cho YG, Kim SD, J. Korean Soc. Environ. Eng., 29(9), 1013, 2007
  10. Chen JY, Ou CF, Hu YC, Lin CC, J. Appl. Polym. Sci., 42(6), 1501, 1991
  11. Adschiri T, Sato O, Machida K, Saito N, Arai K, Kag. Kog. Ronbunshu, 23(4), 505, 1997
  12. Tokunaga K, Yoshida N, Noda N, Sogabe T, Kato T, J. Nucl. Mater., 258(1), 998, 1998
  13. Lee S, Kim JH, Jeong E, Lee YS, Korean Chem. Eng. Res., 54(2), 268, 2016
  14. Kousaalya AB, Kumar R, Packirisamy S, J. Adv. Ceram., 2(4), 325, 2013
  15. Ahmed S, Aitani A, Rahman F, Al-Dawood A, Al-Muhaish F, Appl. Catal. A: Gen., 359(1-2), 1, 2009
  16. Sato Y, Kodera Y, Kamo T, Energy Fuels, 13(2), 364, 1999
  17. Goto M, J. Supercrit. Fluids, 47(3), 500, 2009
  18. Kim DJ, Kim KS, Korean Chem. Eng. Res., 45(6), 536, 2007