Issue
Korean Chemical Engineering Research,
Vol.54, No.4, 459-464, 2016
구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성
Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica
본 연구에서는 리튬이온 전지용 실리콘 음극소재의 사이클 안정성 및 율속 특성 향상을 위해 다공성 실리콘/탄소 복합소재의 전기화학적 특성을 조사하였다. 나노 실리카 제조는 스토버 방법을 사용하고 교반 속도, 교반 온도 및 NH3/TEOS 비율을 조절 하여 100~500 nm 크기의 구형 실리카를 합성하였다. 구형 나노 실리카의 마그네슘 열환원과 산처리 과정을 통해 다공성 실리콘을 얻고, 제조된 다공성 실리콘에 Phenolic resin을 탄소전구체로 사용하여 최종적으로 다공성 실리콘/탄소 활물질을 합성하였다. 또한 LiPF6 (EC:DMC:EMC=1:1:1 vol%) 전해액에서 다공성 실리콘/탄소 음극소재의 충·방전, 순환전압 전류, 임피던스 테스트 등의 전기화학적 특성을 조사 하였다. 다공성 실리콘/탄소 복합소재의 음극활물질로서 코인 전지의 성능을 조사한 결과 초기용량 및 40사이클 용량 보존율은 각각 2,006 mAh/g, 55.4%를 나타내었다.
In this study, the electrochemical characteristics of porous silicon/carbon composite anode were investigated to improve the cycle stability and rate performance in lithium ion batteries. In this study, the effect of TEOS and NH3 concentration, mixing speed and temperature on particle size of nano silica was investigated using Stober method. Nano porous Si/C composites were prepared by the fabrication processes including the synthesis of nano SiO2, magnesiothermic reduction of nano SiO2 to obtain nano porous Si by HCl etching, and carbonization of phenolic resin. Also the electrochemical performances of nano porous Si/C composites as the anode were performed by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved inorganic solvents (EC:DMC:EMC=1:1:1vol%). It is found that the coin cell using nano porous Si/C composite has the capacity of 2,006 mAh/g and the capacity retention ratio was 55.4% after 40 cycle.
[References]
  1. Jeon BJ, Kang SW, Lee JK, Korean J. Chem. Eng., 23(5), 854, 2006
  2. Jung MZ, Park JY, Lee JD, Korean Chem. Eng. Res., 54(1), 16, 2016
  3. Ma C, Ma C, Wang J, Wang H, Shi J, Song Y, Guo Q, Liu L, Carbon, 72, 38, 2014
  4. Ko HS, Choi JE, Lee JD, Appl. Chem. Eng., 25(6), 592, 2014
  5. Zheng Y, Yang J, Wang JL, NuLi YN, Electrochim. Acta, 52(19), 5863, 2007
  6. Lv PP, Zhao HL, Gao CH, Zhang TH, Liu X, Electrochim. Acta, 152, 345, 2015
  7. Zhou R, Fan R, Tian Z, Zhou Y, Guo H, Kou L, Zhang D, J. Alloy. Compd., 658, 91, 2016
  8. Yuan QF, Zhao FG, Zhao YM, Liang ZY, Yan DL, Electrochim. Acta, 115, 16, 2014
  9. Ma X, Liu M, Gan L, Tripathi PK, Zhao Y, Zhu D, Xu Z, Chen L, Phys. Chem. Chem. Phys., 16, 4135, 2014
  10. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62, 1968
  11. Green DL, Jayasundara S, Lam YF, Harris MT, J. Non-Cryst. Solids, 315, 166, 2003
  12. Sada E, Kumazawa H, Koresawa E, Chem. Eng. J., 44(3), 133, 2003
  13. Hwa Y, Kim WS, Yu BC, Kim JH, Hong SH, Sohn HJ, J. Power Sources, 252, 144, 2014
  14. Tao HC, Fan LZ, Qu XH, Electrochim. Acta, 71, 194, 2012
  15. Zhang Y, Jiang YZ, Li YD, Li BB, Li ZH, Niu CM, J. Power Sources, 281, 425, 2015
  16. Wu X, Wang Z, Chen L, Huang X, Electrochem. Commun., 5, 935, 2003