Issue
Korean Chemical Engineering Research,
Vol.53, No.3, 372-381, 2015
Ni/Al2O3 촉매를 사용한 에틸렌글리콜의 수증기 개질 반응: 촉매 제조 방법과 환원온도의 영향
Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature
본 연구에서는 Ni/Al2O3 촉매를 사용한 에틸렌글리콜의 수증기 개질반응에서 제조 방법에 따른 영향을 알아보았다. 촉매들은 건식 함침법, 습식 함침법 그리고 공침법을 사용하여 제조하였다. 공침법을 사용하여 촉매 제조시 침전제를 KOH, K2CO3, NH4OH를 각각 사용하여 침전제에 따른 영향 또한 알아보았다. 제조한 촉매들은 질소 물리흡착, 유도결합 플라즈마 질량분석법(ICP-AES), X선 회절법(XRD), 수소 승온 환원법(TPR), 수소 화학흡착, 승온 산화법(TPO), 주사전자현미경(SEM), 열분석법(TGA)을 사용하여 촉매의 물리화학적인 특성을 분석하였다. 773 K에서 환원한 촉매의 경우 KOH 혹은 K2CO3를 침전제로 사용하여 공침법으로 제조한 촉매가 가장 높은 활성을 보였다. 촉매 제조 방법은 Ni의 입자크기, Ni 산화물의 환원도, 반응에서의 활성과 안정성, 반응 중 탄소 침적의 형태 등에 영향을 끼치는 것을 확인할 수 있었다. KOH를 침전제로 사용하여 공침법으로 제조한 촉매의 경우 환원온도를 773~1173 K까지 증가시켰을 때, Ni 입자크기의 증가에도 불구하고 Ni 산화물의 환원도가 증가하므로 반응활성이 증가하는 것으로 나타났다.
The effect of preparation method on the catalytic activities of the Ni/Al2O3 catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, K2CO3, and NH4OH were compared. The prepared catalysts were characterized by using N2 physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperatureprogrammed reduction, pulsed H2 chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the Ni/Al2O3 catalyst prepared by a coprecipitation with KOH or K2CO3 as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The Ni/Al2O3 catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature.
[References]
  1. Vagia EC, Lemonidou AA, Int. J. Hydrog. Energy, 33(10), 2489, 2008
  2. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG, Angew. Chem.-Int. Edit., 47, 8510, 2008
  3. You SJ, Baek IG, Park ED, Korean Chem. Eng. Res., 50(3), 435, 2012
  4. You SJ, Baek IG, Kim YT, Jeong KE, Chae HJ, Kim TW, Kim CU, Jeong SY, Kim TJ, Chung YM, Oh SH, Park ED, Korean J. Chem. Eng., 28(3), 744, 2011
  5. Yue H, Zhao Y, Ma X, Gong J, Chem. Soc. Rev., 41, 4218, 2012
  6. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. B: Environ., 43(1), 13, 2003
  7. Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA, J. Catal., 215(2), 344, 2003
  8. Huber GW, Shabaker JW, Evans ST, Dumesic JA, Appl. Catal. B: Environ., 62(3-4), 226, 2006
  9. Wang N, Perret N, Foster A, Int. J. Hydrog. Energy, 36(10), 5932, 2011
  10. Vlieger DJM, Chakinala AG, Lefferts L, Kersten SRA, Seshan K, Brilman DWF, Appl. Catal. B: Environ., 111-112, 536, 2012
  11. Jung YS, Yoon WL, Rhee YW, Seo YS, Int. J. Hydrog. Energy, 37(11), 9340, 2012
  12. Marino F, Boveri M, Baronetti G, Laborde M, Int. J. Hydrog. Energy, 26(7), 665, 2001
  13. Basagiannis AC, Verykios XE, Appl. Catal. A: Gen., 308, 182, 2006
  14. Biswas P, Kunzru D, Int. J. Hydrog. Energy, 32(8), 969, 2007
  15. Zhang L, Liu J, Li W, Guo C, Zhang J, J. Nat. Gas Chem., 18, 55, 2009
  16. Haryanto A, Fernando S, Murali N, Adhikari S, Energy Fuels, 19(5), 2098, 2005
  17. Garbarino G, Lagazzo A, Riani P, Busca G, Appl. Catal. B: Environ., 129, 460, 2013
  18. Nichele V, Signoretto M, Menegazzo F, Gallo A, Santo VD, Cruciani G, Cerrato G, Appl. Catal. B: Environ., 111-112, 225, 2012
  19. Goyal N, Pant KK, Gupta R, Int. J. Hydrog. Energy, 38(2), 921, 2013
  20. Piscina PR, Homs N, Chem. Soc. Rev., 37, 2459, 2008
  21. Kim JH, Suh DJ, Park TJ, Kim KL, Appl. Catal. A: Gen., 197(2), 191, 2000
  22. Li GH, Hu LJ, Hill JM, Appl. Catal. A: Gen., 301(1), 16, 2006
  23. Achouri IE, Abatzoglou N, Fauteux-Lefebvre C, Braidy N, Catal. Today, 207, 13, 2013
  24. Ibrahim HH, Kumar P, Idem RO, Energy Fuels, 21(2), 570, 2007
  25. Jung YS, Yoon WL, Seo YS, Rhee YW, Catal. Commun., 26, 103, 2012
  26. Sing SKW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603, 1985
  27. Mattos LV, Jacobs G, Davis BH, Noronha FB, Chem. Rev., 112, 4093, 2012
  28. Chen YG, Ren J, Catal. Lett., 29(1-2), 39, 1994
  29. Eser S, Venkataraman R, Altin O, Ind. Eng. Chem. Res., 45(26), 8956, 2006
  30. Bimbela F, Chen D, Ruiz J, Garcia L, Arauzo J, Appl. Catal. B: Environ., 1-12, 119, 2012
  31. Djaidja A, Libs S, Kiennemann A, Barama A, Catal. Today, 113(3-4), 194, 2006
  32. Lisboa JD, Santos DCRM, Passos FB, Noronha FB, Catal. Today, 101(1), 15, 2005
  33. Trimm DL, Catal. Today, 49(1-3), 3, 1999
  34. Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T, J. Catal., 213(2), 191, 2003
  35. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Bin Park S, Appl. Catal. A: Gen., 340(2), 183, 2008
  36. Vagia EC, Lemonidou AA, Int. J. Hydrog. Energy, 32(2), 212, 2007