Issue
Korean Chemical Engineering Research,
Vol.53, No.3, 357-363, 2015
친환경 타이어 충진제 적용을 위한 SiO2-ZnO 복합체 합성 및 특성평가
Synthesis and Characterization of SiO2-ZnO Composites for Eco-Green Tire filler
타이어 라벨링제 도입으로 인한 친환경 타이어 개발의 요구로 타이어산업에서 사용되고 있는 기존 산화아연의 문제점 개선을 위하여 나노산화아연과 나노기공 실리카와의 복합체 합성에 대한 연구를 진행하였다. 본 연구에서는 타이어의 트레드(tread) 부분에 적용될 기존의 고무 보강재인 카본블랙을 대체하기 위한 실리카와 나노산화아연의 복합체를 합성하기 위하여, 일정량의 나노기공 실리카를 함유하고 재질 상으로는 나노기공 실리카와 산화아연을 물리적 결합을 통하여 hysteresis 손상을 줄이면서 트레드의 탄성을 증대시키기 위해 내마모성능의 향상을 목표로 실험을 진행하였다. 이를 위하여 복합체와 고무 조성물과의 컴파운딩 시 낮은 활성도와 분산안정성 저하의 문제점 개선하고자 숙성시간(Aging time)과 몰 비 그리고 반응물의 반응 순서에 따라 미치는 영향에 대해 조사하였다. 0.03몰 비의 산화아연과 숙성기간 10일의 조건의 실리카에서 가장 작은 평균입도(약 50.5 nm)와 안정적인 분산성을 보였고, 약 649 m2/g의 높은 비표면적을 나타내었다.
The development of the environment-friendly tire that meets the standard requirements according to tire labeling system can be improved through using highly homogeneous silica immobilized zinc oxide nanoparticles. In this study, a considerable amount of nanoporous silica was essentially added into nano zinc oxide to improve the physiochemical properties of the formed composite. The introduction of nanoporous silica materials in the composite facilitates the improvement of the wear-resistance and increases the elasticity of the tread. Therefore, the introduction of nanoporous silica can replace carbon black as filler in the formation of composites with desirable properties for conventional green tire. Herein, mesoporous silica immobilized zinc oxide nanoparticle with desirable properties for rubber compounds was investigated. Composites with homogeneous dispersion were obtained in the absence of dispersants. The dispersion stability was controlled through varying the molar ratio, ageing time and mixing order of the reactants. A superior dispersion was achieved in the sample obtained using 0.03 mol of zinc precursor as it had the smallest grain size (50.5 nm) and then immobilized in silica aged for 10 days. Moreover, the specific surface area of this sample was the highest (649 m2/g).
[References]
  1. Councell TB, Duckenfield KU, Landa ER, Callender E, Environ. Sci. Technol., 38(15), 4206, 2004
  2. Adachi K, Tainosho Y, Environ. Int., 30(8), 1009, 2004
  3. Yang GM, Rubber Chem. Technol., 9(2), 96, 2008
  4. Ko YH, Ko JY, Rubber Technology, 10(2), 108, 2009
  5. Hariharan C, Appl. Catal. A: Gen., 304(1), 55, 2006
  6. Beganskiene A, Sirutkaitis V, Kurtinaitiene M, Juskenas R, Kareiva A, Mater. Sci., 10, 287, 2004
  7. Ranjan B, Kailasnath M, Kumar N, Radhakrishnan P, Achari S, Nampoori VPN, AIP Conf. Proc., 1147(1), 287, 2009
  8. Guo L, Ji Y, Xu H, Wu Z, Simon P, J. Mater. Chem., 13(4), 754, 2003
  9. Ketabi SA, Kazemi AS, Bagheri-Mohagheghi MM, Am. J. Phys., 77(4), 679, 2011
  10. Saito N, Haneda H, Sci. Technol. Adv. Mater., 12(6), 064707, 2011
  11. Yu M, Wang H, Lin CK, Li GZ, Lin J, Nanotechnology, 17(3), 3245, 2006
  12. Hilonga A, Kim JK, Sarawade PB, Quang DV, Shao GN, Elineema G, Kim HT, Korean J. Chem. Eng., 29(11), 1643, 2012
  13. Cao HL, Qian XF, Gong Q, Du WM, Ma XD, Zhu ZK, Nanotechnology, 17(15), 3632, 2006
  14. Serra J, Gonzalez P, Liste S, Serra C, Chiussi S, Leon B, Perez-Amor M, Ylanen HO, Hupa MJ, Non-Cryst. Solids, 332(1), 20, 2003
  15. Hong RY, Li JH, Chen LL, Liu DQ, Li HZ, Zheng Y, Ding J, Powder Technol., 189(3), 426, 2009