Issue
Korean Chemical Engineering Research,
Vol.53, No.3, 302-308, 2015
3-메틸펜테인과 에틸렌 글리콜 모노프로필 에테르 및 에틸렌 글리콜 아이소프로필 에테르 혼합물에 대한 2성분계 등온 기-액 상 평형
Isothermal Vapor-liquid Equilibria for the Binary Mixtures of 3-Methylpentane with Ethylene Glycol Monopropyl Ether and Ethylene Glycol Isopropyl Ether
본 연구에서는 3-Methylpentane을 포함하는 Ethylene glycol monopropyl ether (C3E1) 및 Ethylene glycol isopropylether (iC3E1) 계면활성제 혼합물에 대한 2성분계 기-액 상 평형을 서로 다른 온도 조건(303.15, 318.15, 333.15K)에서 측정 및 비교하였다. C3E1은 분자 내 수소결합과 분자 간 수소결합이 동시에 나타나는 자가 회합 성 물질이므로 상 평형 예측을 어렵게 하는 경향이 있다. 본 연구의 목적은 C3E1 혼합물과 그 이성질체인 iC3E1 혼합물의 상 평형을 각각 측정 및 비교함으로써, 자가 회합 성 물질의 이성질체가 상 평형에 어떠한 영향을 미치는지 알아보는 것이다. 측정된 시스템은 PR-WS-NRTL, PR-WS-UNIQUAC, 그리고 PR-WS-WILSON 모델을 이용하여 각각 계산하고 각 모델의 성능을 비교하였다. 계산에 사용된 모델은 대부분 좋은 결과를 보여주었으며, 특히 PR-WS-NRTL 모델이 가장 좋은 결과를 나타냈다. 또한 측정 시스템 간의 상 평형 차이가 크게 발생하지 않은 것으로 보아 자가 회합 성 물질의 이성질체가 상 평형에 끼치는 영향은 크지 않음을 알 수 있었다.
Isothermal vapor liquid equilibria for the binary system of 3-methylpentane with ethylene glycol monopropyl ether (C3E1) and ethylene glycol isopropyl ether (iC3E1) were measured at 303.15, 318.15, and 333.15K. In our previous work, phase equilibria for the binary system of C3E1 mixtures were investigated according to the chain length of alkane, alcohol or those isomer. But in this study, we discussed the different effect of C3E1 and its isomer, iC3E1, on the phase equilibria. The measured systems were correlated with a Peng-Robinson equation of state (PR EOS) combined with Wong-Sandler mixing rule for the vapor phase, and NRTL, UNIQUAC, and Wilson activity coefficient models for the liquid phase. All the measured systems showed good agreement with the correlation results. And it was found that the phase equilibria showed very little difference between the iC3E1 mixture system and the C3E1 mixture system.
[References]
  1. Davis MI, Chacon M, Thermochim. Acta, 190(2), 259, 1991
  2. Lai HH, Chen LJ, J. Chem. Eng. Data, 44(2), 251, 1999
  3. Lee HS, Lee H, J. Chem. Eng. Data, 41(6), 1358, 1996
  4. OH SG, KIM JG, KIM JD, Korean J. Chem. Eng., 4(1), 53, 1987
  5. Carmona FJ, Bhethanabotla VR, Campbell SW, Gonzalez JA, de la Fuente IG, Cobos JC, J. Chem. Thermodyn., 33(1), 47, 2001
  6. Carmona FJ, Gonzalez JA, Garcia de la Fuente I, Cobos JC, Bhethanabotla VR, Campbell SW, J. Chem. Eng. Data, 45(4), 699, 2000
  7. Ramsauer B, Neueder R, Kunz W, Fluid Phase Equilib., 272(1-2), 84, 2008
  8. Jang S, Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 41(1), 51, 2009
  9. Lee Y, Jang S, Shin MS, Kim H, Fluid Phase Equilib., 276(1), 53, 2009
  10. Jang S, Hyeong S, Shin MS, Kim H, Fluid Phase Equilib., 298(2), 270, 2010
  11. Hyeong S, Jang S, Lee CJ, Kim H, J. Chem. Eng. Data, 56(12), 5028, 2011
  12. Hyeong S, Jang S, Lee KS, Kim H, J. Chem. Eng. Data, 57(6), 1860, 2012
  13. Hyeong S, Jang S, Lee KS, Kim H, Korean J. Chem. Eng., 30(2), 434, 2013
  14. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15(1), 59, 1976
  15. Wong DSH, Sandler SI, American Inst. Chem. Eng. J, 38(5), 671, 1992
  16. Renon H, Prausnitz JM, American Inst. Chem. Eng. J., 14(1), 135, 1968
  17. Abrams DS, Prausnitz JM, American Inst. Chem. Eng. J., 21(1), 116, 1975
  18. Wilson GM, J. Am. Chem. Soc., 86(2), 127, 1964
  19. “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” NIST Technical Note 1297, 1994 Edition., 1994
  20. “NIST Chemistry Webbook,” NIST Standard Reference Database Number 69, National Institute of Standards and Technology (http://webbook.nist.gov/chemistry).
  21. “DIPPR 801 Database,” Design Institute for Physical Property Data; American Institute of Chemical Engineers.
  22. Poling BE, Prausnitz JM, O’connell JP, The properties of gases and liquids, 5th ed., McGrawHill, New York, NY(2001)., 2001