Issue
Korean Chemical Engineering Research,
Vol.51, No.1, 106-110, 2013
이온성 액체 촉매를 이용한 해조류 다시마로부터 환원당 생산
Production of Reducing Sugar from Macroalgae Saccharina japonica Using Ionic Liquid Catalyst
거대 해조류인 다시마의 가수분해에 적합한 이온성 액체를 선정하기 위하여 20종의 이온성 액체를 실험에 사용하였다. 이 중 환원당의 생성능이 우수하다고 판단되는 3종의 이온성 액체 촉매(1-ethyl-3-methylimidazolium tetrafluoroborate, n-butyl-4-methylpyridinium tetrafluoroborate, n-methylmorpholine [HSO4])를 선정하였다. 이들 이온성 액체를 대상으로 반응온도, 촉매량, 반응시간에 따른 영향을 조사하였다. 3종의 이온성 액체 촉매 모두에서 반응온도가 121 ℃가 되어야 다시마의 가수분해가 일어나는 것으로 확인되었다. 3종의 모든 이온성 액체 촉매에서 반응시간이 지남에 따라 선형적으로 증가되는 경향을 보였다. 1-Ethyl-3-methylimidazolium tetrafluoroborate를 촉매로 사용한 경우에서는 90분에는 약 6.2 g/L, n-butyl-4-methylpyridinium tetrafluoroborate는 6.4 g/L, n-methylmorpholine [HSO4]는 6.0 g/L의 환원당을 얻을 수 있었다. 이로부터 이온성 액체를 촉매로 이용하여 해조류로부터 당의 생산가능성을 확인하였다.
In this work, we investigated 20 kinds of ionic liquids as catalyst during the hydrolysis of Saccharina japonica. Three kinds of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate, n-butyl-4-methylpyridinium tetrafluoroborate, and n-methylmorpholine [HSO4], are selected, and then investigated the effect of reaction temperature, catalyst amount and reaction time. The hydrolysis of S. japonica was increased by the increasing of reaction temperature and ionic liquid amount. Also, the hydrolysis presented the linear increase by the increasing of reaction time. After 90 min of reaction, the concentrations of reducing sugar of 1-ethyl-3-methylimidazolium tetrafluoroborate, n-butyl-4-methylpyridinium tetrafluoroborate, and n-methylmorpholine [HSO4] are reached to 6.2 g/L, 6.4 g/L and 6.0 g/L, respectively. As an overall result, we obtained the possibility of hydrolysis of marine biomass using ionic liquids.
[References]
  1. Song BB, Kim SK, Jeong GT, KSBB J., 26, 347, 2011
  2. Yeon JH, Seo HB, Oh SH, Choi WS, Kang DH, Lee HY, Jung KH, KSBB J., 25, 283, 2010
  3. Lee SJ, Go S, Jeong GT, Kim SK, Biotechnol. Bioprocess Eng., 16, 561, 2011
  4. Lee SM, Choi IS, Kim SK, Lee JH, KSBB J., 24, 483, 2009
  5. Jeong GT, Park DH, KSBB J., 26, 341, 2011
  6. Faaij A, Biomass Bioenerg., 32(8), 657, 2008
  7. Demibras A, Prog.Energ. Combust., 33, 1, 2007
  8. Jeong GT, Park JH, Park SH, Park DH, KSBB J., 24, 89, 2009
  9. Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41, 2010
  10. Lee SB, Cho SJ, Lee SY, Paek KH, Kim JA, Chang JH, KSBB J., 24, 495, 2009
  11. Meinita MDN, Hong YK, Jeong GT, Bioprocess Biosyst. Eng., 35, 123, 2012
  12. Meinita MDN, Hong YK, Jeong GT, Bioprocess Biosyst. Eng., 35, 93, 2012
  13. Jang JS, Cho Y, Jeong GT, Kim SK, Bioprocess Biosyst. Eng., 35, 11, 2012
  14. Lee SM, Kim JH, Cho HY, Joo H, Lee JH, J. Korean Ind. Eng. Chem., 20(5), 517, 2009
  15. Kim JK, “Pretreatment and Enzymatic Hydrolysis of Ulva pertusa Kjellman,” M.S. Thesis, Inha University, Incheon, Korea, 2010
  16. Choi DB, Sim HS, Piao YL, Ying W, Cho H, J. Ind. Eng. Chem., 15(1), 12, 2009
  17. Lee H, Lee JS, Kim HS, Appl. Chem. Eng., 21(2), 129, 2010
  18. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, “Determination of Structural Carbohydrates and Lignin,” in Biomass Laboratory Analytical Procedure (LAP), Technical Report NREL/TP-510-42618, 2008
  19. Zhou N, Zhang Y, Gong X, Wang Q, Ma Y, Bioresour. Technol., 118, 512, 2012