Issue
HWAHAK KONGHAK,
Vol.41, No.5, 643-648, 2003
용융염산화 반응기에서 기체체류량 및 기-액 흐름특성
Gas Holdup and Gas-Liquid Flow Characteristics in a Molten Salt Oxidation Reactor
용융염산화는 혼성폐기물과 유해폐기물을 효과적으로 산화 및 분해할 수 있는 소각대체기술중 하나이다. 본 연구에서는 직경이 0.079 m이고 높이가 0.653 m인 용융염산화 반응기에서 기체체류량 및 기-액 흐름특성에 대한 연구를 수행하였다. 액상으로 용융탄산나트륨을 기상으로 건조된 공기를 사용하였으며 기체유속(0.05-0.22 m/s)과 용융염온도(870-970 ℃)변화가 기체체류량 및 기-액 흐름특성에 미치는 영향을 규명하였다. 기체체류량은 용융염 온도가 상승함에 따라 증가하였는데, 이는 용융염 온도의 증가로 인해 용융된 탄산나트륨의 점도와 표면장력이 감소하였기 때문이다. 실험에서 얻어진 기체체류량 데이터를 drift-flux 모델에 적용하여 용융염반응기 내의 흐름특성을 규명할 수 있었으며, 이를 통해 흐름영역에 따른 기체체류량을 정확하게 예측할 수 있었다.
Molten salt oxidation is one of the most promising alternatives to incineration that can be used to efficiently destroy the organic components of mixed wastes and hazardous wastes. In this study, the gas holdup and gas-liquid flow characteristics are investigated in the molten salt oxidation reactor (0.076 m D.×0.653 m H.). Effects of input air velocity (0.05-0.22 m/s) and molten salt temperature (870-970 ℃) on the gas holdup and flow characteristics have been studied. Molten carbonate as the liquid phase and air as the gas phase have been used in this study. The gas holdup increases with increasing molten salt temperature due to the decrease of viscosity and surface tension of molten carbonate. The experimentally obtained gas holdups in the molten salt reactor have been well described and characterized by means of drift-flux model. The gas holdups with variation of the flow regime have been well predicted.
[References]
  1. Hsu PC, Foster KG, Ford TD, Wallman PH, Watkins BE, Pruneda CO, Adamson MG, Waste Manage., 20, 363, 2000
  2. Pruned CO, Watkins BE, Upadhye RS, "Recent Advances in the Molten Salt Destruction of Energetic Materials," JANNAF Propulsion and Subcommittee Joint Meeting, December, FL, 1995
  3. Cho YJ, Yang HC, Yun JS, Kim JH, J. Environ. Thermal Eng., 1(2), 75, 2002
  4. Janz GJ, Molten Salts Handbook, Academic Press, NY, 1967
  5. Syeda SR, Afacan A, Chuang KT, Can. J. Chem. Eng., 80(1), 44, 2002
  6. Reilly IG, Scott DS, Debruijn TJ, Macintyre D, Can. J. Chem. Eng., 72(1), 3, 1994
  7. Idogawa K, Ikeda K, Fukuda T, Morooka S, Int. Chem. Eng., 27(1), 93, 1987
  8. Woo KJ, Cho YJ, Kim KI, Kang Y, Kim SD, HWAHAK KONGHAK, 36(6), 937, 1998
  9. Deckwer WD, Bubble Column Reactor, Wiley, NY, 1992
  10. Grover GS, Rode CV, Chaudhari RV, Can. J. Chem. Eng., 64, 501, 1986
  11. Zou R, Jiang X, Li B, Zu Y, Zhang L, Ind. Eng. Chem. Res., 27(10), 1910, 1988
  12. Pohorecki R, Moniuk W, Zdrojkowski A, Bielski P, Chem. Eng. Sci., 56(3), 1167, 2001
  13. Lin TJ, Tsuchiya K, Fan LS, AIChE J., 44(3), 545, 1998
  14. Fan LS, Gas-Liquid-Solid Fluidization Engineering, Butterworths, Stoneham, MA, 1980
  15. Davidson JF, Schuler BOG, Trans. Inst. Chem. Eng., 38, 335, 1960
  16. Wilkenson PM, Dierendonck LLV, Chem. Eng. Sci., 45(8), 2309, 1990
  17. Bellman R, Pennington RH, J. Appl. Math., 12, 151, 1953
  18. Zubar N, Findlay J, Trans. ASME J. Heat Transfer Ser. C, 87, 453, 1965
  19. Kang Y, Lim WM, Kim SD, HWAHAK KONGHAK, 25(5), 460, 1987
  20. Clark NN, Flemmer RLC, AIChE J., 31(3), 500, 1985
  21. Clark NN, Egmond JW, Nebiolo EP, Int. J. Multiph. Flow, 16(2), 261, 1990
  22. Mishima K, Hibiki T, Int. J. Multiph. Flow, 22(4), 703, 1996
  23. Hibiki T, Ishii M, Int. J. Heat Mass Transf., 46(10), 1773, 2003