Issue
Korean Chemical Engineering Research,
Vol.59, No.4, 639-643, 2021
불소화 에틸렌 프로필렌 나노 입자 분산액을 이용한 3차원 다층 미세유체 채널 제작
Fabrication of 3D Multilayered Microfluidic Channel Using Fluorinated Ethylene Propylene Nanoparticle Dispersion
본 연구에서는 3차원 다층 미세유체 디바이스를 제작하기 위한 접착제로서 불소화 에틸렌 프로필렌(fluorinated ethylene propylene, FEP) 나노입자를 연구하였다. FEP 분산 용액을 1500 rpm에서 30초 동안 단순 스핀 코팅하여 기판에 3 μm 두께의 균일하게 분포된 FEP 나노 입자 층을 형성하였다. FEP 나노입자는 300 oC에서 1시간 동안 열처리 후 소수성 박막으로 변형되었으며, FEP 나노입자를 이용하여 제작된 폴리이미드 필름 기반 미세유체 디바이스는 최대2250 psi의 압력을 견디는 것을 확인하였다. 마지막으로 기존의 포토리소그래피로 제작하기 어려운 16개의 마이크로 반응기로 구성된 3차원 다층 미세유체 디바이스를 FEP가 코팅된 9개의 폴리이미드 필름을 간단한 1단계 정렬로 성공적으로 구현하였다. 개발된 3차원 다층 미세유체 디바이스는 화학 및 생물학의 다양한 응용을 위한 고속대량 스크리닝, 대량 생산, 병렬화 및 대규모 미세유체 통합과 같은 강력한 도구가 될 가능성이 있습니다.
In this study, fluorinated ethylene propylene (FEP) nanoparticle as an adhesive for fabricating a threedimensional multilayered microfluidic device was studied. The formation of evenly distributed FEP nanoparticles layer with 3 μm in thickness on substrates was achieved by simple spin coating of FEP dispersion solution at 1500 rpm for 30 s. It is confirmed that FEP nanoparticles transformed into a hydrophobic thin film after thermal treatment at 300 °C for 1 hour, and fabricated polyimide film-based microfluidic device using FEP nanoparticle was endured pressure up to 2250 psi. Finally, a three-dimensional multilayered microfluidic device composed of 16 microreactors, which are difficult to fabricate with conventional photolithography, was successfully realized by simple one-step alignment of FEP coated nine polyimide films. The developed three-dimensional multilayered microfluidic device has the potential to be a powerful tool such as high-throughput screening, mass production, parallelization, and large-scale microfluidic integration for various applications in chemistry and biology.
[References]
  1. Hessel V, Renken A, Schouten JC, Yoshida J, “Micro Process Engineering,” Wiley-VCH, Weinheim (2009).
  2. Dallinger D, Gutmann B, Kappe CO, Accounts Chem. Res., 53(7), 1330, 2020
  3. Mou L, Jiang X, Adv. Healthcare Mater., 6(15), 160140, 2017
  4. Ren K, Zhou J, Wu H, Accounts Chem. Res., 46(11), 2396, 2013
  5. McDonald JC, Whitesides GM, Accounts Chem. Res., 35, 491, 2002
  6. Sia SK, Whitesides GM, Electroanalysis, 24(21), 3563, 2003
  7. Raj MK, Chakraborty S, J. Appl. Polym. Sci., 137(27), 48958, 2020
  8. Lee JN, Park C, Whitesides GM, Anal. Chem., 75(23), 6544, 2003
  9. Dangla R, Gallaire F, Baroud CN, Lab Chip, 10, 2972, 2010
  10. Min KI, Kim JO, Kim H, Kim DP, Lab Chip, 16(6), 977, 2016
  11. Min KI, Lee HJ, Kim DP, Lab Chip, 14(20), 3987, 2014
  12. You JB, Min KL, Lee B, Kim DP, Im SG, Lab Chip, 13(7), 1266, 2013
  13. See Teflon information in the Dupont website, https://www.teflon.com.
  14. Wan AM, Sadri A, Young EW, Lab Chip, 15(18), 3785, 2015
  15. Jia ZJ, Fang Q, Fang ZL, Anal. Chem., 76(18), 5597, 2004
  16. Ogonczyk D, Wegrzyn J, Jankowski P, Dabrowski B, Garstecki P, Lab Chip, 10(10), 1324, 2010
  17. Anderson JR, Chiu DT, Jackman RJ, et al., Anal. Chem., 72(14), 3158, 2000
  18. Li X, Yu ZTF, Geraldo D, et al., Rev. Sci. Instrum., 86(7), 075008, 2015
  19. Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ, J. Microelectromech. Syst., 9(2), 190, 2000
  20. Torsen T, Maerkl SJ, Quake SR, Science, 298(5593), 580, 2002
  21. Brouzes E, Medkova M, Savenelli N, et al., Proc. Natl. Acad. Sci. U.S.A., 106, 14195, 2009