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Abstract − Numerical simulations on the onset and the growth of viscous fingering during the miscible displacement

due to the radial source flow were conducted. With introduction of a new stability criterion, the critical log-viscosity

ratio, Rc, was found as a function of the Peclet number, Pe. Similar to the previous linear stability analyses, Pe made the

system unstable, i.e., accelerated the onset of instability. For a large Pe system, the present numerical simulation yielded

much stable results than the previous theoretical predictions This discrepancy was commonly encountered in the

comparison between the theoretical prediction and the experimental finding. Additionally, the difference between the

rectilinear system and the present one was also discussed. The present system was found more insensitive to the Peclet

number than the rectilinear one. 
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1. Introduction

When more viscous fluid is displaced by a less viscous one,

hydrodynamic instability known as viscous fingering (VF) can be

induced due to the viscosity mismatch [1]. Since, viscous fingering

phenomena play important roles in a wide variety of applications,

such as enhanced oil recovery, fixed bed regeneration in chemical

processing, hydrology, filtration, and so on, miscible VF has attracted

many researcher’s interests. Under the linear stability theory, Tan and

Homsy derived stability equations in a radial Hele-Shaw cell or a

porous medium and obtained the stability limits for the onset of radial

viscous fingering in a porous medium [2]. Later, Pritchard studied

double diffusive effects on the onset of radial viscous fingering [3].

By considering the double diffusive effects, he derived linear stability

equations and described disturbance quantities based on an eigenfunction

expansion method which enabled us to investigate the structure of

the discrete eigenvalue spectrum. Inspired by Pritchard’s approach,

Kim revisited Tan and Homy’s radial viscous fingering problem by

suggesting eigenfunctions and corresponding eigenvalue spectrums

[2-5]. 

Recently, using the Linear Stability Analysis (LSA) and Nonlinear

Numerical Simulations (NNSs), Sharma et al. determined the critical

conditions for the onset of viscous fingering as a function of log-

viscosity ratio (R), the dimensionless radius of injection port (ri), and

Peclet number (Pe) [6]. Unlike Tan and Homy’s normal mode

analysis, Sharma et al. traced the amplification of the disturbance

energy by treating the linearized stability equation as an initial value

problem (IVP) [2,6]. In their LSA, they found that diffusive forces

inhibited the growth of the disturbances and therefore, retarded the

onset of instability motions. They also found that the relative

intensity of the diffusive forces over the convective one can be

controlled by the radius of the injection port, ri. According to their

linear and nonlinear numerical simulations, the larger the inlet

diameter was, the more stable the system. Based on the results of the

NNSs, Sharma et al. proposed the following critical log-viscosity

ratio: 

 with 

for the range of  and  [6]. Addition-

ally, through the experiments, Sharma et al. showed that the insta-

bilities were suppressed by increasing the radius of the injection

port [6]. Later, Nand et al. experimentally analyzed the effects of

the gap size of the Hele-Shaw cell on the stability characteristics

of the radial VF [7]. Furthermore, they confirmed their experi-

mental findings bythe 3-dimensional numerical simulations. As

suggested by Kim, the onset of instability was hindered and the

width of the fingers increased with an increment in the gap, which

further weakened convective motion and therefore, decreased the

Peclet number [4].

Since the analytic base fields were not known except for the

limiting case of point source flow, i.e., , Sharma et al. and Nand

et al., didn’t try to compare their numerical simulations with Tan and

Homy’s and Kim’s (2012) theoretical predictions obtained under the

linear stability analysis [2,6-7]. In the present study, we tried to fill

the gap between Tan and Homy’s and Kim’s theoretical stability

analyses and Sharma et al.’s numerical simulations [2,4,6]. For the

limiting case of point source flow, where analytical analysis was

Rc α ri( )Pe β–
= 0.52 β 0.59≤ ≤

ri 0.1 0.3,[ ]∈ Pe 500 10
4,[ ]∈

ri 0→
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possible, the critical conditions for the onset of radial VF were

numerically determined and compared with the previous theoretical

predictions. 

2. Base System and Governing Equations 

Let us consider a two-dimensional Hele-Shaw cell (see Fig. 1) in

which a solution in concentration C0 was injected radially from a

source at r' = 0 with a constant areal flux Q (volume flow rate per

unit depth) into a domain initially filled with a solution in

concentration C
∞
. If the viscosity of the displacing solution, μ0, was

lower than that of the displaced one, μ
∞
, the flow system can be

hydrodynamically unstable and induce the viscous fingering motion.

The governing equations for the conservation of mass, the conservation

of momentum in the form of Hele-Shaw approximation, and the

convection-dispersion-reaction mass balance equation were given

by,

, (1)

, (2)

, (3)

Here,  was the velocity vector, P the pressure, μ

the viscosity, K the permeability, C the concentration of solute in a

solution, and D the dispersion coefficient of a solute in a solvent

[2,4,5]. Here, we assume that the fluid was incompressible and

Newtonian. In addition, the injection condition can be derived as 

(4)

where n was the outward normal unit vector and Ri was the diam-

eter of the inlet port. Here, we ignored the non-linear drag effect

which was considered by Kim [8]. 

In the cylindrical (r, θ)-coordinate, where , the

dimensionless governing equations can be written as 

, (5)

, (6)

, (7)

Here, ,  and 

were used as length, time, velocity, viscosity, pressure, and concentration

scales, respectively. In addition, Pe was the Péclet number defined as

[3,9]

. (8)

The Péclet number means the ratio of the convective transfer rate

and dispersive one, and the Damköhler number represents the ratio

of the reaction time scale with respect to the mass transfer time scale.

It should be noted that Pe was mainly controlled by the mass flux Q,

and the inlet condition (4) can be rewritten as

 at , (9)

where  and . In addition, the boundary

conditions for the concentration field were

 at r = ri  and c = 0 as . (10a&b)

To complete the above model, the viscosity variation with the

concentration was assumed to be 

, (11)

where R was the log-viscosity ratio defined as

. (12)

3. Numerical Simulations

We solved the governing equations (5)-(12) in the 2-dimensional

x-y domain by employing a finite element solver, COMSOL Multiphysics,

which has been used to study viscous and gravitational fingering

problems [9-15]. By combining Eqs. (5) and (6), we derive the following

Poisson equation:

, (13)
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Fig. 1. Schematic diagram of system considered under investigation.
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and solved it by using the Poisson equation solver (abbreviated

as ‘poeq’ in the mathematics interface of COMSOL software).

The inlet condition (9) was implemented as

 at . (14)

For the point source system, i.e., , to treat the singular

boundary condition (14), Verma et al. [16] approximated the velocity

field as  and , where 

(15)

, (16)

(17)

However, in the present study, the point source condition, 

as can be implemented by adding the following weak contribution

at the injection point: 

test(p) (18)

where  can be obtained using the inlet condition (9).

Unlike Tan and Homsy’s and Kim’s linear stability analysis, it was

impossible to impose semi-infinite boundary conditions in the present

numerical simulations [2,4]. Due to this limitation, we imposed the

following outlet conditions at re (=1.5): 

 at . (19)

Then, by using Eq. (6), the velocity field was obtained and was

used to solve the diffusion-advection equation (7). This diffusion-

advection equation was solved by the stabilized convection-diffusion

equation solver (abbreviated as ‘scdeq’ in the mathematics interface

of COMSOL software using the following initial and boundary

conditions [9]:

 at , (20)

. (21a&b)

Unlike the previous theoretical analyses, where semi-infinite time

and space domains were assumed, in the present study we proceeded

with numerical simulations for the ranges of [0, τf] and [0, τe]. Here,

we stress that unlike the previous studies, the present analysis was

not dependent on the built-in modules of COMSOL software, i.e.,

the present solution methods were in-house implementations of

COMSOL software [10-16]. 

For the example case of Pe = 1000, τf = 1.5 and re = 2.5, the spatio-

temporal evolution of the concentration fields for stable and unstable

cases were compared in Fig. 2. Stable displacements were visible for

R = 0 and R = 0.5, whereas VF motion in an unstable front was

clearly shown for the case of R = 1. Furthermore, slightly unstable

VF motion was visible around R = 0.65. To quantify the distortion of

the concentration field by VF motion and the magnitude of instability

motion, we traced the temporal evolution of the concentration field

by defining the magnitudes of the velocity ( ) and concentration

gradient (I), as

, (22a)

. (22b)

, (23a)

. (23b)

The quantity I, which was known as the interfacial length, has

been widely used to quantify the enhancement of mixing due to

convection [17]. Sharma et al. classified that the system was unstable

if , otherwise stable [6]. However, as shown in Fig. 3,

 explained the present simulation results summarized in

Fig. 2, i.e., VF motion was visible around  for the case of

τf = 1.5. Furthermore, there existed a critical time, τc, from which

instability motion can be expected. From this point, we employed the

following stability criteria:

 with tol = 10−4, (24a)

 with tol = 10−4. (24b)

4. Results and Discussion

Sharma et al. [6] nondimensionalized the governing equations (2)

by using the injection time, tf, and  as the time and length scales.

So, their Pe was different from the present one. Major differences

between Sharma et al.’s and the present dimensionless parameters
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Fig. 2. Spatio-temporal evolution of concentration fields for

Pe = 103, R = 0 (first raw), R = 0.5 (second raw), R = 0.65

(third raw), and R = 1 (fourth raw). 
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were summarized in Table 1 [6]. Numerically, Sharma et al.’s PeS

and dimensionless time, τS, have the following relations with the

present ones:

PeS = 2πPe, and τS = 2πτ, (25a&b)

Furthermore, it should be kept in mind that even though the Peclet

number defined by Tan and Homsy was the same as Verma et al.’s, to

keep Tan and Homsy’s velocity field, rur = 1, their Pe should be

rescaled by the present one [2,18]. Here, because we wanted to

compare the previous theoretical predictions with FEM numerical

simulations, we followed Tan and Homsy’s scaling relations with

modification. 

Unlike the linear stability analyses where the critical conditions

were determined in semi-infinite space and time domains, we cannot

perform numerical simulation for unbounded domains. For some Pe

cases, the effect of injection time, τf, on the critical log-viscosity

ratio, Rc was summarized in Fig. 4. Since  increased with time

as discussed in Fig. 3, Rc decreased continuously with increasing τf.

However, the decreasing rate, dRc/dτf, became smaller with increasing

τf and decreasing Pe. Based on the above findings, we should choose

a longer τf to minimize the discrepancy between the previous linear

stability analyses and the present numerical simulations. 

In the case of τf = 1.5 and rf = 2.5, the critical log-viscosity ratio,

Rc, was summarized in Fig. 5. For their time and length scales,

Sharma et al. proposed the following relation [6]:

 for  and τS = 1 , (26a)

which was equivalent with 

δ u

R 30PeS
0.55–

= 500 PeS 10
4<<

Fig. 3. Temporal evolution of (a) δI and δ||u|| (b) for the case of Pe = 10
3

and re = 2.5.

Table 1. Comparison of definitions and parameters used in the present

study and the previous one

Present study Sharma et al. [6]

Radial velocity ru
r
= 1 ru

r
=

Peclet no.

Dimensionless flux, 2π 1

1

2π
------

Q

2πD
A

-------------
Q

D
A

------

Q

Fig. 4. Effect of injection time, τf, on the critical log-viscosity ratio,

Rc.

Fig. 5. Comparison of the present critical condition with previous

theoretical and numerical studies.
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 for  and τ = 1/2π. (26b)

However, their critical condition was far below the present one:

Rc = 10.92Pe
−0.55 for 80 < Pe < 1600. As shown in Fig. 5, their critical

condition was far below the lower limit suggested by the linear

stability analysis, their stability criterion, based on the interfacial

length I may not be suitable for the present system. It should be kept

in mind that the critical condition, Rc, was strongly dependent on the

stability criterion and calculation domains. As shown in Figs. 3 and

4, if we extend our simulations for a longer time, i.e., τf > 1.5, Rc can

be further lowered until the lower limit suggested by the linear

stability analysis. 

As discussed in Figs. 3(b) and 4, there existed a critical time if the

value of R > Rc. For the example case of Pe = 10
3, the effect of the

log-viscosity ratio on the critical time was summarized in Fig. 5. For

the rectilinear system, based on the linear stability analysis, Ryoo

and Kim and Kim and Pramanik suggested the following onset time

[13,19]:

. (27)

According to their analytic solution, for the limiting case of R<<1, 

 and β = 2. (28)

The above onset time was in good agreement the findings of

Perkin’s et al. [20] In addition, they proposed that the exponent β

decreases with increasing R. However, less intention was given to

the present radial VF system. The radial VF instability cannot be

expected in the lower left region of each curve. Unlike the

rectilinear system, regardless of R, τc, was relative insensitive to

Pe, if Pe > 103 [19]. It should be noted that the present τc and Pec

were different from those for the previous continuous injection

system because our simulations were conducted in finite space and

time domains [2]. 

For a given fluids pair, the Péclect number can be controlled by the

injection flow rate, Q. For the case of R = 1, the effect of Pe on the

concentration field was summarized in Fig. 6. As shown in this

figure, for the high Pe case, i.e., Pe > 103, Pe played little role in the

temporal evolution of the concentration field. According to experiments

of Sharma et al., even though the number of fingers increased with

the volumetric injection rate, the average finger length was relatively

insensitive to the injection rate. 

5. Conclusions

The onset and the growth of the viscous fingering instability in a

finite radial Hele-Shaw cell or a porous medium were analyzed

numerically. Unlike the previous theoretical linear stability

analysis, we studied the effects of the log-viscosity and Peclet

number on the stability characteristics for the finite domain of

0 < τ ≤ 1.5 and 0 < r ≤ 2.5. For a small Peclet number system, the

current numerical simulations recovered the previous theoretical

prediction whose domain corresponded to the semi-infinite domain

of 0 < τ ≤ ∞ and 0 < r ≤ ∞. However, for a highly large Peclet

number system, the present simulations yielded more stable results

than the linear stability analysis [8]. This discrepancy between the

previous theoretical predictions and the present numerical

simulation came from the difference in the calculation domain. The

current simulations in the finite space and time domains show that

the characteristics of radial VF were relatively insensitive to the

Peclet number if Pe > 103. 

Rc 10.92Pe
0.55–

= 80 Pe 1600<<

τcPe αR β–
=

α 31.877=

Fig. 6. Effects of the Peclet number on (a) the spatio-temporal evo-

lution of concentration fields for R = 1 and (b) interfacial

length. 
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